于是Area Under roc Curve(AUC)就出现了。顾名思义,AUC的值就是处于ROC 曲线下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的性能。AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准。 二、基本概念 解读ROC图的一些概念定义:: 1. 四种分类 真正(True Positive ,...
1. AUC (Area Under Curve) 被定义为ROC曲线下的面积,取值范围一般在0.5和1之间。 使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。 2.AUC 的计算方法 非参数法:(两种方法实际证明是一致的) 梯形法则:早期由于测试样本有限,我们...
虽然,用ROC curve来表示分类器的Performance很直观好用。可是,人们总是希望能有一个数值来标志分类器的好坏。于是Area Under roc Curve(AUC)就出现了。 顾名思义,AUC的值就是处于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的performance。 2. ROC的动机 对于0,1两类...
AUC(Area Under the Curve)表示的是在ROC曲线与坐标轴围成的面积,表示在FPR从0到1的过程中TPR的累积值∫01TPRd(FPR)x = 0:表示在当前阈值下,只有正样本的得分大于阈值; y = 1:表示在当前阈值下,所有正样本的得分大于阈值; x = 1:表示在当前阈值下,所有样本的得分都大于阈值;...
在正式介绍 ROC/AUC 之前,我们还要再介绍两个指标,这两个指标的选择也正是 ROC 和 AUC 可以无视样本不平衡的原因。这两个指标分别是:灵敏度和(1- 特异度),也叫做真正率(TPR)和假正率(FPR)。 灵敏度(Sensitivity) =TP/(TP+FN) 特异度(Specificity) =TN/(FP+TN) ...
在进行学习器的比较时,若一个学习器的ROC曲线被另一个学习器的曲线完全“包住”,则可断言后者的性能优于前者;若两个学习器的ROC曲线发生交叉,则难以一般性的断言两者孰优孰劣。此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ...
由于ROC曲线的形状难以直接量化比较,因此引入了AUC(Area Under the Curve of ROC)这一指标。AUC,即ROC曲线下的面积,能够直观地反映分类算法的性能。在ROC曲线图中,蓝色曲线下方的面积相较于红色曲线更大,这意味着蓝色线的AUC值更高,从而表明其分类性能更佳。在ROC曲线图中,我们可以观察到不同曲线的AUC值...
此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ROC Curve),如图1、图2所示。 五、什么是AUC面积 AUC就是ROC曲线下的面积,衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。假定ROC曲线是由坐标为 的点按序连接而形成,参见图2,则...
The ROC curve shows the ability of the classifier to rank the positive instances relative to the negative instances, and it is indeed perfect in this ability. ROC曲线对类别分布的变化不敏感。如果测试集中的正负样本比例发生改变,ROC曲线也不会变化。原因在于,roc曲线的横纵坐标fp rate, tp rate分别在...