在 上一篇文章中,我们了解了评价一个二分类的机器学习分类器好坏四个常见指标:Accuracy、Precision、Recall、F1 Score。本文介绍另外两个指标:ROC-AUC和PR-AUC。ROC曲线ROC(Receiver Operating Characteristic…
模型的提升在 ROC-AUC 的坐标轴上体现非常小,FPR 从 0.1 降低到 0.01,而在 PR 曲线上 P 从 0.074 增加到 0.444。虽然在数值的倍数上看,FPR 是提高了 100 倍,更大,但是体现在曲线上,由于其数量级太小,并不会给人观感上提升的感觉;相反,PR-AUC 上的数量级比 ROC-AUC 大得多,有着肉眼可见的提升。所以...
ROC_AUC是ROC曲线下的面积,用于衡量分类器在不同阈值下的预测性能。 二、面对不平衡数据的应用 PR_AUC对于不平衡数据集更为敏感,当正负样本数量差异较大时,PR_AUC能够更好地反映分类器的性能。 ROC_AUC在面对不平衡数据时,由于考虑了FPR,可能会相对较好地平衡正负样本的影响。 三、应用场景不同 PR_AUC适用于在...
参考性能评估之PR曲线与ROC曲线。 ROC曲线 ROC曲线英文’receiver operating characteristic curve’,直译为“接受者操作特性曲线”,又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。 ROC曲线是在...
1. ROC-AUC 与 PR-AUC 定义及计算 ROC,Receiver Operation Characteristics AUC,Area Under Curve ROC-AUC 指的是 ROC 曲线下的面积 通过在 [0, 1] 范围内选取阈值 (threshold) 来计算对应的 TPR 和 FPR,最终将所有点连起来构成 ROC 曲线。 一个没有任何分类能力的模型,意味着 TPR 和 FPR 将会相等 (所...
ROC 曲线的 x 轴是 FPR。在给定不平衡数据的情况下,与召回率的变化相比,FPR 的变化是缓慢的。这个因素导致了上面差异的产生。在解释之前,我们要强调的是这里是不平衡的数据集。查看 100 个示例后考虑 FPR,可能会看到最多 100 最少 80 个 的负例(误报),因此 FPR 在区间 [0.04, 0.05] 内。相比...
AUC和AP分别是ROC和PR曲线下面积,map就是每个类的ap的平均值;python代码(IDE是jupyter notebook): #绘制二分类ROC曲线importpylab as pl%matplotlib inlinefrommathimportlog,exp,sqrt evaluate_result="D:/python_sth/1.txt"db=[] pos , neg=0 , 0 ...
PR曲线以recall为x轴,precision为y轴,通过每个阈值得到一个坐标连线而成。当正负样本差距不大的情况下,ROC和PR的趋势是差不多的,但是当负样本很多的时候,两者就截然不同了,ROC效果依然看似很好,但是PR上反映效果一般。比如就1个正例,100个负例,那么基本上TPR可能一直维持在1,然后突然降到0。
所以在面对不平衡数据集的时候,ROC-AUC 貌似并不是最佳的选择,PR-AUC 更能体现出模型的性能提升。所以当类别相对来说较均衡时,可以使用 ROC-AUC,当类别极其不均衡时使用 PR-AUC 较好。那为什么不只使用 PR-AUC 呢?ROC-AUC 对于分类模型来说存在的意义是什么?看了许多文章多采用一个说法:从...
二分类的性能指标:PR曲线、ROC曲线、AUC的基本相关概念 PR 曲线 PR曲线实则是以precision(精准率)和recall(召回率)这两个变量而做出的曲线,其中recall为横坐标,precision为纵坐标。 一条PR曲线要对应一个阈值。通过选择合适的阈值,比如50%,对样本进行划分,概率大于50%的就认为是正例,小于50%的就是负例,从而计算...