Projects Security Insights Additional navigation options master BranchesTags Code Attentional Feature Fusion MXNet/Gluon code for "Attentional Feature Fusion"https://arxiv.org/abs/2009.14082 What's in this repo so far: Code, trained models, and training logs for CIFAR-100 and ImageNet ...
WACV 2021 Open Access Repositoryopenaccess.thecvf.com/content/WACV2021/html/Dai_Attentional_Feature_Fusion_WACV_2021_paper.html 代码地址: https://github.com/YimianDai/open-affgithub.com/YimianDai/open-aff 这篇文章提出了一种新注意力特征融合机制AFF,是一种即插即用的模块,性能优于SKNet、SEN...
AFF-注意力特征融合 | Attentional Feature Fusion 感觉实验做的也太少了…很水 https://arxiv.org/pdf/2009.14082.pdf https://github.com/YimianDai/open-aff Abstract: 特征融合是来自不同层或分支的特征的组合,是现代网络体系结构中无所不在的一部分。它通常通过简单的操作(例如求和或拼接)来实现,但这可能...
该操作需登录 Gitee 帐号,请先登录后再操作。 立即登录 没有帐号,去注册 编辑仓库简介 简介内容 code and trained models for "Attentional Feature Fusion" 主页 取消 保存更改 1 https://gitee.com/tianlee/open-aff.git git@gitee.com:tianlee/open-aff.git tianlee open-aff open-aff master北京...
The code is available at https://github.com/mkang315/BGF-YOLO .Kang, MingMonash UniversityTing, Chee-MingMonash UniversityTing, Fung FungMonash UniversityPhan, Raphal C.-W.Monash UniversitySpringer, ChamInternational Conference on Medical Image Computing and Computer-Assisted Intervention...
The source code is publicly available at https://github.com/yhf2022/APAN. This is a preview of subscription content, log in via an institution to check access. Similar content being viewed by others Enhanced YOLOv7 with three-dimensional attention and its application into underwater object ...
::: 代码:https://github.com/kouyongqi/DAEGC 本文参与腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。 原始发表:2022/05/08 ,如有侵权请联系cloudcommunity@tencent.com删除 前往查看 https 网络安全 数据结构 Marigold0 LV.1 这个人很懒,什么都没有留下~ ...
semantic information captured by GFPM. Source code can be available athttps://github.com/Xmy678/BAINet/tree/master. The main contributions of this paper are as follows. • A new RGB-D SOD network is introduced based on the dual-stream structure, which achieves bidirectional interaction of ...
The implementation code is available at https://github.com/xlwang233/CaLLiPer. A causal intervention framework for synthesizing mobility data and evaluating predictive neural networks 2025, Transportation Research Interdisciplinary Perspectives Show abstract Deep neural networks are increasingly utilized in ...
This paper proposes attentional audio-visual multi-layer feature fusion model, in which soft threshold attention unit are applied on feature mapping at every layer of decoder. The proposed model demonstrates the superior performance of the network against the state-of-the-art models. PDF Abstract ...