四. Scaleddot-productAttention的源码实现 Scaled dot-product Attention定义如下: 可以理解为:将Source中的构成元素想象成是由一系列的(Key,Value)数据对构成,此时给定Target中的某个元素Query,通过计算Query和各个Key的相似性或者相关性,得到每个Key对应Value的权重系数,然后对Value进行加权求和,即得到了最终的Attention...
additive attention和dot-product attention是两种非常常见的attention机制。additive attention出自于论文《NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE》,是基于机器翻译的应用而提出的。scaled dot-product attention是由《Attention Is All You Need》提出的,主要是针对dot-product attention加上...
Transformer[^1]论文中将这个Attention公式描述为:Scaled Dot-Product Attention。其中,Q为Query、K为Key、V为Value。Q、K、V是从哪儿来的呢?Q、K、V其实都是从同样的输入矩阵X线性变换而来的。我们可以简单理解成: 用图片演示为: X分别乘以三个矩阵,生成Q、K、V矩阵 其中, , 和 是三个可训练的参数矩阵。输...
scaled dot product attention详解 Scaled Dot-Product Attention是Transformer模型中的一种注意力机制,其作用是实现Multi-Head Attention。 Scaled Dot-Product Attention的计算方式如下: 计算Query矩阵Q、Key矩阵K的乘积,得到得分矩阵scores。 对得分矩阵scores进行缩放,即将其除以向量维度的平方根(np.sqrt(d_k))。 若...
ScaledDotProductAttention类在Transformer模型中用于实现缩放点积注意力机制。它通过计算查询(Q)和键(K)...
在学习 Scaled Dot-Product Attention 的过程中,遇到了如下公式Attention(Q,K,V)=softmax(QKdk)V不禁产生疑问,其中的 dk 为什么是这个数,而不是 dk 或者其它的什么值呢?Attention Is All You Need 中有一段解释We suspect that for large values of dk, the dot products grow large in magnitude, pushing ...
在深度学习领域,注意力机制是一种重要的模型优化技术,主要用于提高神经网络对输入数据的表示能力。其中,Scaled Dot Product Attention是PyTorch库中的一段代码,用于实现Scaled Dot Product Attention算法。作为一种高效的注意力机制,它在多头注意力层处理中表现出良好的性能。
原始 scaled dot product attention 的计算过程可以分解为三个步骤。首先引入 lazy softmax 来避免为 attn 分配实际内存,仅在每个线程中保留一些累积值,从而显著减少内存占用。然而,这种实现方式在性能上还有待优化,因为它导致计算退化,但仍能大幅减少内存需求。进一步优化涉及在 KV 数据上实施数据块化...
scaled dot-product attention 基本就是这样了。基于 RNN 的传统 encoder 在每个时刻会有输入和输出,而现在 encoder 由于抛弃了 RNN 序列模型,所以可以一下子把序列的全部内容输进去,来一次 self-attention 的自嗨。 理解了 scaled dot-product attention 之后,multi-head attention 就好理解了,因为就是 scaled dot...
在FlashAttention-2 的加持之下,torch.nn.functional.scaled_dot_product_attention的速度提升了大约 2 倍,在 A100 GPU 上达到了理论计算峰值的 50%-73%。 AOTInductor AOTInductor 是 TorchInductor 的扩展,用于处理导出的 PyTorch 模型,对其进行优化,并生成共享库以及其他相关工件。