经典译文:Transformer--Attention Is All You Need 来源 https://zhuanlan.zhihu.com/p/689083488 本文为Transformer经典论文《Attention Is All You Need》的中文翻译: https://arxi
An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibilit...
著名的提出 Transformer 的文章,来自 NIPS 2017。由本人翻译,原文:Attention is All you Need封面图截自动漫 ブレンド・S 第 12 集。摘要主流的序列转换(sequence transduction)模型都是编码器(encoder)和…
梯度消失 梯度消失是指在反向传播时,随着神经网络层数的增加,梯度逐渐变得非常小,接近于零。这会导致早期层的权重更新变得极其缓慢甚至停滞,从而无法有效学习深层结构。 梯度爆炸 梯度爆炸是指在反向传播过程中,梯度逐层变得越来越大,导致权重更新过大,模型参数发生剧烈变化,可能导致数值不稳定、溢出或不收敛。 长短期...
原链接:Transformer 论文翻译:Attention is All you Need (wulfric.me) 摘要 显性序列转导模型基于包括编码器和解码器的复杂递归或卷积神经网络。性能最佳的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单网络架构,即 Transformer,它完全基于注意力机制,完全摒弃了循环和卷积。对两项机器翻译任务的...
注意力机制(Attention Mechanism)旨在提高模型在处理序列数据时的表现,核心思想是允许模型在生成输出时“关注”输入序列的不同部分,从而能够捕捉和利用输入中的关键信息。 注意力机制的核心概念: 对齐:注意力机制为每个输出元素生成一个对齐分数,表示该输出元素应该关注输入序列中的哪些部分。这个对齐分数通常是通过计算输入...
简介:【Transformer系列(3)】《Attention Is All You Need》论文超详细解读(翻译+精读) 前言 哒哒~时隔好久终于继续出论文带读了,这次回归当然要出一手王炸呀——没错,今天我们要一起学习的就是传说中的Transformer!在2021年Transformer一经论文《Attention is All You Need》提出,就如龙卷风一般震惊学术界,不仅在NL...
接下来,是中文部分的精读: 这一论文集的标题为“Attention Is All You Need”,暗示注意力机制是理解自然语言处理(NLP)和人工智能中其他任务的关键。论文集中的论文探讨了注意力机制在各种NLP任务中的应用,包括机器翻译、语言建模和问答等。 第一篇论文《基于注意力的语音识别模型》介绍了注意力机制在语音识别中的应...
“Attention is all you need”一文在注意力机制的使用方面取得了很大的进步,对Transformer模型做出了重大改进。 目前NLP任务中的最著名模型(例如GPT-2或BERT),均由几十个Transformer或它们的变体组成。 背景 减少顺序算力是扩展神经网络GPU、ByteNet和C...
开一个新坑,叫做「中学生能看懂」系列,把晦涩的行业论文,用「中学生能看懂」的语言来讲解 这是第一篇:《Attention Is All You Need》 。这篇论文可以说是自然语言处理领域的一个里程碑,它引领了NLP模型架构的变革,并对各种NLP任务产生了深远的影响。