基于TCN-GRU-Attention(时间卷积网络-门控循环单元-注意力机制)的风电功率预测研究,是近年来在风电功率预测领域的一个新兴研究方向。该方法结合了TCN在时间序列特征提取上的高效性、GRU在处理长期依赖关系上的优势以及Attention机制在提升模型对关键特征敏感度方面的作用,旨在提高风电功率预测的准确性和稳定性。以下是对该...
电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测 锂电池作为现代电子设备的重要动力源,其剩余寿命预测成为了科研领域的热门话题。本文创新性提出基于GRU-Attention机制的锂电池剩余寿命预测方法,旨在通过深度学习技术,精准捕捉电池老化过程中的复杂动态模式,为智能电池管理提供有力支持。 GRU-Attention模型结合了门...
CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。 3.1 CNN(卷积神经网络)部分 在时间序列回归任务中,CNN用于捕获局部特征和模式:...
机器翻译模型中Attention和GRU的应用 云南民族大学 黄钰凝 针对传统循环神经网络RNN 在机器翻译中效率不高以及计算量过大的问题,提出一种基于GRU 神经网络和Attention 机制的机器翻译模型。首先,使用注意力模块保证堆叠多层结构的可复用性,提高运行效率。其次,模型融合了注意力机制的编码-解码器和循环神经网络模块提取...
在具体实现中,我们可以使用深度学习框架如TensorFlow或PyTorch来构建注意力-GRU模型。首先,我们需要定义一个注意力层,该层将输入和一个可学习的注意力向量之间的相似度计算为注意力权重。然后,我们可以将注意力层与GRU层结合起来,构建一个完整的注意力-GRU模型。最后,我们可以使用训练数据对模型进行训练,并使用测试数据...
在具体实现中,我们可以使用深度学习框架如TensorFlow或PyTorch来构建注意力-GRU模型。首先,我们需要定义一个注意力层,该层将输入和一个可学习的注意力向量之间的相似度计算为注意力权重。然后,我们可以将注意力层与GRU层结合起来,构建一个完整的注意力-GRU模型。最后,我们可以使用训练数据对模型进行训练,并使用测试数据...
MATLAB实现Attention-GRU多输入单输出回归预测(注意力机制融合门控循环单元,也可称呼TPA-GRU,时间注意力机制结合门控循环单元),将注意力机制( attention mechanism) 引入GRU( gated recurrent unit) 模型之中,最后,将特征数据集划分为训练集、验证集和测试集,训练集用于训练模型,确定最优模型参数,验证集和测试集用于...
已有的文献和代码,大都是针对英文语料,使用词向量作为输入进行训练。这里以实践为目的,介绍一个用双向GRU、字与句子的双重Attention模型,以天然适配中文特性的字向量(character embedding)作为输入,网络爬取数据作为训练语料构建的中文关系抽取模型。 代码主要是基于清华的开源项目thunlp/TensorFlow-NRE开发,感谢!
基于WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型多变量时序预测一键对比(仅运行一个main即可) Matlab代码,每个模型的预测结果和组合对比结果都有! 1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。 2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
TCN-GRU-Multihead-Attention多变量时间序列预测算法的研究旨在充分利用时间序列数据中的信息,提高预测的准确性和鲁棒性。首先,通过TCN模型对时间序列数据进行特征提取和表示学习,以捕捉数据中的长期依赖关系。接着,利用GRU模型对提取的特征进行建模,以捕捉数据中的短期依赖关系。最后,引入多头注意力机制对模型进行加权融合...