AtCoder Beginner Contest 298 A - Job Interview (abc298 a) 题目大意 给定包含o-x的字符串,问是否不包含x且包含o。 解题思路 遍历一遍即可。 神奇的代码 #include<bits/stdc++.h> usingnamespacestd; usingLL =longlong; intmain(void){ ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); ...
dp[i][j][1]表示T在i点,A在j点且轮到A走时赢的概率 代码: #include <bits/stdc++.h>usingnamespacestd;#definell long long#defineendl '\n'usingnamespacestd; typedeflongdoubleld; typedef pair<int,int>pii; typedef pair<int,pair<int,ll>>pil; typedef unsignedlonglongULL;constll mod =998244...
(等概率) 状态表示: dp(i, j) a从i开始走,b从j开始走, a赢的概率 状态转移: 当i + x >= n , dp(i, j) = dp(i + x, j + y) \times \frac{1}{p} 当i + x < n , dp(i, j) = dp(i + x, j + y) \times \frac{1}{p} \times \frac{1}{q} 代码: #include <...
dp[i][j][1]=1p∑k=1pdp[min(i+k,n)][j][0] 原理同上 code : #include <bits/stdc++.h> #define x first #define y second #define endl '\n' #define int long long #define NO {puts("NO"); return;} #define YES {puts("YES"); return;} using namespace std; typedef long long...
AtCoder Beginner Contest 269「A」「B」「C 二进制枚举」「D 暴力dfs」「E 二分答案」「F 等差数列+推式子」 https://suryxin.blog.csdn.net/article/details/126974824 AtCoder Beginner Contest 269(E-EX) https://www.bilibili.com/opus/707445585544740886 ...
AtCoder Beginner Contest 287 D - Match or Not https://blog.csdn.net/qq_73887470/article/details/130116960 AtCoder Beginner Contest 287-E题(字典树/Trie https://zhuanlan.zhihu.com/p/603720615 AtCoder Beginner Contest 287 D 和 E https://zhuanlan.zhihu.com/p/602258994 ...
AtCoder Beginner Contest 169(题解) AtCoder Beginner Contest 169(题解)E - Count Median结论题给定nnn个xi∈[ai,bi]x_i\in[a_i,b_i]xi∈[ai,bi],求中位数的个数。定义:k=⌊n2⌋k=\lfloor\dfrac{n}{2}\rfloork=⌊2n⌋,对a,ba,ba,b进行排序后,为ak+1a_{k+1}ak...
AtCoder Beginner Contest 273的C题是否需要使用动态规划来解决? A - A Recursive Function Origional Link 题目大意: 求f(k) 如下: f(0)=1; f(k)=k×f(k−1) 思想: 签到题。 代码: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 #include <iostream> #include <cstring> #include <cstdio...
We will hold AtCoder Beginner Contest 199(Sponsored by Panasonic). ,satashunYoshikaMiyafuji Rated range: ~ 1999 The point values will be 100-200-300-400-500-600. We are looking forward to your participation! If any of the vertices of a component have degree 3 or higher so our total answ...
AtCoder Beginner Contest 193 部分题解 E - Oversleeping 求是否存在\(t\)满足\(t=t_1(mod (2X+2Y)) and t=t_2(mod (P+Q))\) 注意到\(Q\)和\(Y\)非常小,直接枚举套个\(exCRT\)就行了(虽然赛场上没看出来,\(exCRT\)也忘了记得快速乘...