这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。相对于CPU和GPU的冯诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比CPU和GPU高。那么相对于ASIC,FPGA的性能...
这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。 相对于CPU和GPU的冯·诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比...
通信密集型任务,CPU、GPU、FPGA、ASIC 的数量级比较(以 64 字节网络数据包处理为例,数字仅为数量级的估计) 对通信密集型任务,FPGA 相比 CPU、GPU 的优势就更大了。 从吞吐量上讲,FPGA 上的收发器可以直接接上 40 Gbps 甚至 100 Gbps 的网线,以线速处理任意大小的数...
主流的AI芯片主要包括GPU、FPGA、ASIC等。其中,GPU和FPGA是前期较为成熟的通用型芯片架构,而ASIC是为AI特定场景定制的芯片。CPU在AI应用领域也是必不可少,但不适用于AI计算。另外还有类脑芯片,可算作ASIC的一种。各种AI芯片各有优缺点。例如,GPU在深度学习算法训练上非常高效,但在应用时只能处理一张输入图像...
计算能力:CPU适合执行复杂的控制逻辑和串行计算任务;GPU擅长处理大规模并行计算任务;ASIC和FPGA则针对特定任务进行了优化,能够提供极高的计算效率。 功耗:一般来说,ASIC的功耗最低,其次是FPGA,再次是CPU,而GPU由于其并行处理能力强大,功耗也相对较高。 灵活性:CPU和GPU的编程灵活性最高,能够适应广泛的计算任务;FPGA...
这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。 相对于CPU和GPU的冯诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比CPU和GPU高。
GPU GPU(Graphics Processing Unit,图形处理器):一种专用处理器,主要用于图形、影像、视频等计算密集型应用。GPU采用并行处理方式,可以同时处理多个指令,适合于并行计算,其算力比CPU高,但功耗也较高。FPGA FPGA(Field-Programmable Gate Array,现场可编程门阵列):一种可编程逻辑器件,可以按照用户需求进行编程...
FPGA是一种可编程集成电路,用户可以根据需求进行配置,以执行不同的任务。这种灵活性使得FPGA在应对不断变化的市场需求时具有显著优势。相对于CPU和GPU的冯·诺依曼结构,FPGA以其独特的无指令、无需共享内存设计脱颖而出。在重编程过程中,每个逻辑单元的功能已预先设定,从而确保了FPGA的高能效。那么,FPGA与ASIC...
揭秘AI芯片领域的巨头:CPU、GPU、FPGA、ASIC的特性与优劣对比 当前,智能驾驶领域在深度学习AI算法方面主要依赖通用芯片,如GPU和FPGA,来实现加速。同时,部分芯片企业开始设计专门针对AI算法的ASIC专用芯片。在智能驾驶产业应用尚未大规模兴起和批量投放之前,使用通用芯片可以避免专门研发定制芯片的高投入和高风险。然而,这类...