Pandas中的`groupby`方法用于根据指定的列或多个列对数据进行分组,而`as_index`参数决定了是否返回分组后的索引。当`as_index=True`时,返回的DataFrame或Series将使用分组标签作为索引;当`as_index=False`时,返回的DataFrame或Series将使用原始的索引。解释:在Pandas中,`groupby`是一个非常强大的功能...
1print(df.groupby('books',as_index=True).sum()) 看以下as_index为False的输出: 1print(df.groupby('books',as_index=False).sum()) 可以看到为True时 自动把第一列作为了index as_index为True时可以通过book的name来提取这本书的信息,如: 1df = df.groupby('books',as_index=True).sum()2print(...
Pandas是一个基于Python的数据分析库,而as_index是Pandas中的一个参数,用于控制分组操作后是否将分组列作为索引。 具体来说,as_index参数在Pandas的groupby函数中使用。groupby函数用于将数据按照指定的列或多个列进行分组,并对每个分组进行聚合操作。默认情况下,groupby函数会将分组列作为索引,即as_index=True。 当as...
as_index为True的话,第一列当索引
as_index : boolean, default TrueFor aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output“effe...
When as_index=True the key(s) you use in groupby will become an index in the new dataframe. The benefit of as_index=True is that you can yank out the rows you want by using key names. For eg. if you want 'bk1' you can get it like this: df.loc['bk1'] as opposed to when ...
as_index: bool,默认为True 对于聚合输出,返回以组标签作为索引的对象。仅与DataFrame输入相关。as_index = False实际上是“SQL风格”的分组输出。 如下是没有使用as_index的实验结果: import pandasas pd from pyechartsimport Line df= pd.DataFrame({'name': ['张三','李四','王五','张三','王五','...
使用group by 函数时,as_index 可以设置为 true 或 false,具体取决于您是否希望分组依据的列作为输出的索引。 import pandas as pd table_r = pd.DataFrame({ 'colors': ['orange', 'red', 'orange', 'red'], 'price': [1000, 2000, 3000, 4000], 'quantity': [500, 3000, 3000, 4000], }) ...
d1 = df.groupby('books',as_index=True).sum()#as_index=True 将分组的列当作索引字段print(d1)#调用print('==='*10)print(d1.loc['b1']) d2 = df.groupby('books',as_index=False).sum()#as_index=False 分组列没有成为索引print(d2)print('==='*10)# print(d2.loc['b1'])...
翻译过来就是说as_index 的默认值为True, 对于聚合输出,返回以组标签作为索引的对象。仅与DataFrame输入相关。as_index = False实际上是“SQL风格”的分组输出。举例如下 importpandasaspd df = pd.DataFrame(data={'books':['bk1','bk1','bk1','bk2','bk2','bk3'],'price': [12,12,12,15,15,17...