此处手动设定为 ARIMA(5, 1, 2),并使用模型拟合。 from statsmodels.tsa.arima.model import ARIMA # 使用ARIMA模型拟合时间序列的线性部分 model_arima = ARIMA(df['Value'], order=(5, 1, 2)) arima_result = model_arima.fit() # 生成预测值并绘制图形 df['ARIMA_Prediction'] = arima_result.predi...
ARIMA (p,d,q)模型是ARMA(p,q)模型的扩展,是ARMA(p, q)模型的一般表达形式。但ARMA(p,q)模型对时间序列要求平稳,而在实际生活中的大多变量包含白噪声及其他随机因素,导致ARMA (p,q)模型不再适用。此时需要用到ARIMA(p,d,q)模型将非平稳的时间序列进行一次或多次差分,转化为平稳的时间序列14。 ARIMA(p...
1.2 CNN - LSTM 模型 考虑到影响因素众多,故本文使用了一种基于 CNN - LSTM 的多变量预测模型,将数据的多个变量输入进神经网络模型中,通过 CNN 对数据进行特征提取,其中原理如下。 定义一段水位数据序列为细胞状态Ct由输入门和遗忘门的变化决定,其表达式如下:2 运行结果...
本文提出了一种混合模型,该模型结合了自回归积分滑动平均(ARIMA)模型和长短期记忆(LSTM)网络的优势,以提高时间序列预测的准确性。ARIMA模型作为一种经典的统计方法,能够捕捉数据的线性依赖关系,而LSTM网络作为一种深度学习技术,能够处理更复杂的非线性模式和长期依赖关系。 ARIMA模型 ARIMA模型是时间序列预测中常用的方法...
基于LSTM-ARIMA模型股票预测研究 摘要:随着理财观念的不断深化,股票作为金融资产在资本市场的投资价值逐渐显现。因此,对股票价格的预测越来越成为当下专家学者的研究重点。其中,股价涨跌幅趋势的研究能够帮助投资者制定个性化选股策略,从而提高可行性、降低风险,以此达到投资收益率最大化。本文选取不同领域的6支股票进行分析...
ARIMA模型是一种基于时间序列分析的模型,被广泛应用于股票市场的预测中。它基于时间序列的自相关性、差分后的平稳性和移动平均性。ARIMA模型有三个关键参数:p(自回归阶数)、d(差分阶数)和q(移动平均阶数)。通过对历史数据的分析,可以找到最佳的参数来构建ARIMA模型。LSTM模型是一种基于人工神经网络的模型,...
时间序列数据在金融、医疗保健、能源和天气预报等领域发挥着至关重要的作用。选择合适的模型来分析和预测时间序列数据对于获取准确且实用的见解至关重要。本文将深入探讨三种流行的方法——ARIMA、LSTM和门控循环神经网络,突出它们的优点、缺点以及各自适用的情境。
ARIMA 模型的优势在于其简单易用,可以处理非季节性时间序列数据。然而,ARIMA 模型的缺点在于其对于非常复杂的时间序列数据的表现可能不是最佳的。 2.2 LSTM 概述 LSTM(长短期记忆网络)是一种特殊的循环神经网络(RNN)结构,它具有 gates(门)机制,可以捕捉时间序列数据中的长期依赖关系。LSTM 网络的基本结构包括输入门(...
基于你的需求,以下是关于如何在MATLAB中实现ARIMA-LSTM组合模型的详细步骤和代码片段: 1. ARIMA模型的基本原理 ARIMA(自回归积分滑动平均模型)是一种用于时间序列预测的统计模型。它结合了自回归(AR)、差分(I)和滑动平均(MA)三个概念,用于捕捉时间序列中的线性趋势和周期性。 2. LSTM模型的基本原理 LSTM(长短期记...
通过单位根检验和序列分解,我们确定了民航旅客周转量数据的非平稳性,并采用ARIMA模型进行建模和拟合。在模型选择过程中,我们比较了Holt-Winters三参数指数平滑模型、SARIMA模型和LSTM模型的拟合效果,以确定最佳的预测模型。 1 数据描述 根据1990-2023年的我国民航旅客周转量的月统计资料,绘制其趋势图如图所示。 为了更好...