选择ARIMA模型的方法是根据模型选择的一个图表参考确定。预测模型当然是可以的!
arima(0,0,1)没有意义。ARIMA模型没有arima(0,0,1)。ARIMA模型是差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。
通过对数据进行一阶差分或多阶差分,可以得到一个平稳的时间序列,为接下来的建模和预测提供了良好的基础。 3. ARIMA(p,d,q)模型 在进行差分操作后,我们通常会得到ARIMA(p,d,q)模型中的残差序列。在ARIMA(p,d,q)模型中,p代表自回归阶数,d代表差分阶数,q代表移动平均阶数。残差序列是指用ARIMA模型进行拟合后...
要预测的话把这个模型结果存起来然后用predict(model)就可以了。
1.ARIMA(0,1,0) = random walk: 当d=1,p和q为0时,叫做random walk,每一个时刻的位置,只与上一时刻的位置有关。预测公式:Yt=μ+Yt−1 2.1 主要应用场合 平稳非白噪声的序列 2.2白噪声检查 lb=acorr_ljungbox(data.diff1.dropna(), lags = [i for i in range(1,12)],boxpierce=True) ...
d=1,q=p=0,arima(0,1,0)该模型是随机游走模型(醉汉模型)x(t)=x(t-1)+ξ(t)E(ξ(t))=0,var(ξ(t))=σ^2,E(ξ(t)ξ(s))=0,s不等于t E(x(s)ξ(t))=0,任意s<t,
可以看到,lag1,lag2之后,偏自相关落入了蓝色背景区间内,表示不相关,所以这里阶数可以选择2,或者保守点选择1。 MA阶数q MA阶数通过acf图来设定,因为MA是预测误差,预测误差是自回归预测和真实值之间的偏差。定阶过程类似AR阶数的设定过程。这里可以选择3,或者保守点选择2。
具有ARIMA(0,1,0)对称误差的非线性模型的统计诊断 本文讨论具有ARIMA(0,1,0)对称误差的非线性模型的异方差检验和局部影响分析.对称误差分布族包括正态,t,power exponential,logistics Ⅰ,Ⅱ,污染正态等所有对称连续分布.文章首先导出了关于白噪声异方差检验的score统计量及其调整形式,然后对模型进行了局部影响分析,...
假设是白噪声序列,若服从ARIMA(0,1,0)模型,那么我们此时建立的模型可以为(),我们也称这一类模型为随机游走过程A.B.C.D.