ARFIMA是分整自回归移动平均模型,其具有与ARMA模型相同的表示形式,但差分参数d可以是非整数值: 在差分参数d是非整数的情况下,则可以如下操作 在R中,我们编程探索HAR-RV和HAR-RV-CJ模型。 MSE如下所列 结论 从结果我们知道基于ARFIMA的模型具有与HAR-RV相似的准确度,并且两者都比GARCH模型好得多。
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格 R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列 Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测 R语言时间序列GARCH模型分析股市波动率 R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测 matlab实现MCMC的马尔...
结果表明,基于长记忆和实现波动率的ARFIMA-RV模型是最准确的模型。 1.基于GARCH的模型 描述波动率聚类 为了模拟异方差性,GARCH采用以下过程: 为了反映金融市场的不对称性,学者们提出了EGARCH,TGARCH或APARCH,其中APARCH更为一般。 我们从在R中拟合APARCH开始: 可以看出ARCH效应是显而易见的 我们可以得到模型的系数,...
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格 R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列 Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测 R语言时间序列GARCH模型分析股市波动率 R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测 matlab实现MCMC的马尔...
这样就充分利用了样本信息和模型参数先验信息,因而具有更小的方差,能得到更精确的估计结果。最后本文以上证综合指数五分钟数据来进行仿真分析,建立了基于MCMC模拟方法的贝叶斯估计的ARFIMA(p,d,q)-GARCH(r,s)模型。数据分析中采用典型的Gibs抽样,基于MCMC模拟1500次,舍弃前100次,得到ARFIMA(1,d,1).GARCH(1,1)各...
本文考虑了ARFIMA-GARCH类模型的状态空间表示.ARFIMA-GARCH这类模型结合了长记忆时间序列和条件异方差过程.虽然ARFIMA-GARCH模型的状态空间表示是无穷维的,但是基于这种表示法的精确极大似然估计可以在样本长度的迭代计算中得到.本文提出了基于模型的截断的自回归展开式的似然函数近似估计,进而得到了... 查看全部>> ...
本文考虑了ARFIMA-GARCH类模型的状态空间表示.ARFIMA-GARCH这类模型结合了长记忆时间序列和条件异方差过程.虽然ARFIMA-GARCH模型的状态空间表示是无穷维的,但是基于这种表示法的精确极大似然估计可以在样本长度的迭代计算中得到.本文提出了基于模型的截断的自回归展开式的似然函数近似估计,进而得到了模型参数的拟似然估计....
基于ARFIMA-FIGARCH模型的利率市场风险度量,基于ARFIMA-FIGARCH模型的利率市场风险度量利率,度量,市场,模型的,基于利率,市场风险,利率,度量,市场..
摘要: 通过基于"已实现"波动率,对上证综合指数收益波动基本统计特性进行分析.结果表明基于"已实现"波动率的ARFIMA组模型的预测能力要明显优于GARCH模型,对数"已实现"波动率的ARFIMA模型预测能力最好.关键词: "已实现"波动率;GARCH模型;ARFIMA模型 DOI: CNKI:SUN:XDBY.0.2007-17-025 年份: 2007 ...
【摘要】以2000年1月4日到2003年11月7日深证成指日收盘价数据为基础,通过对其收益率序列的长记忆性以及异方差性进行检验,建立ARFIMA-GARCH模型,并且将模型对深证成指的预测结果与实际情况进行对比。结果表明,利用ARFIMA-GARCH模型可以较好地分析深证成指日收益率序列的变化特征,从而可以为政府及相关部门提供决策意见。