The area of a circle with a radius of 5 cm is ___. A. 25π cm² B. 10π cm² C. 5π cm² D. 75π cm² 相关知识点: 试题来源: 解析 A。本题考查圆的面积计算公式,圆的面积 = π×半径²。半径为 5cm,所以面积为 25π cm²。选项 B 计算错误,应为 25π cm...
Radius: or Diameter or Circumference: Unit: Calculate Area Result: The area of a circle with radius 65 is 13270 Formulae: r = 65 d = 130 C = 408 A = πr2 = π(d2)2 A = C24π π = 3.1415 A = area C = circumference or perimeter r = radius, d = diameter Solut...
The area of a circle with radius 4 cm is ___. A. 8π cm² B. 12π cm² C. 16π cm² D. 20π cm² 相关知识点: 试题来源: 解析 C。圆的面积等于πr²,半径为 4 厘米,面积是π×4²=16π 平方厘米。A 选项半径为 2 倍根号 2 厘米的圆面积约为 8π 平方厘米;...
The area of a circle with a radius of 3 cm is equal to the area of a square. What is the side length of the square? A. 3 cm B. 3π cm C. 3√π cm D. 9 cm 相关知识点: 试题来源: 解析 C。解析:圆的面积为π×3×3 = 9π平方厘米。设正方形边长为 a,则 a×a = 9π,...
The area of a circle with a radius of 3 cm is ___ square centimeters. A. 3π B. 6π C. 9π D. 12π 相关知识点: 试题来源: 解析 C。本题考查圆的面积公式。半径为 3 cm 的圆的面积是 A = πr² = π×3² = 9π 平方厘米。反馈 收藏 ...
百度试题 结果1 题目Calculate the area of a circle with a radius of 7 cm.相关知识点: 试题来源: 解析 Area = π(radius)^2 = π(7)^2 ≈ 反馈 收藏
Radius (r): or Diameter (d): or Area (A): Unit of Lenght: Calculate Circumference Result: The circumference of a circle with area 6π is 15.39(*) Formulas: r = 2.45 d = 4.9 C = 15.4 C = 2·π·r C = π·d C = √4·π·A π = 3.1415 A = area ...
七、英语数学(翻译)(10分)1.Find the area of a circle with a radius of 8 centimeters.2.A right triangle has one angle that measures90°.七、英语数学(翻译)(10 分) 1.Find the area of a circle with a radius of 8 centimeters. 2.A right triangle has one angle that measures 90°. ...
Find the area of a circle with a radius of 7 units.搜索 题目 Find the area of a circle with a radius of 7 units. 答案 解析 null 本题来源 题目:Find the area of a circle with a radius of 7 units. 来源: 越分练习题 收藏 反馈 分享...
The circumference of a circle is the line drawn around the outer edge of the circle. The area of a circle is the total area within the circumference of a circle. Both formulas use the radius of the circle, a line drawn from the center of the circle to the outer edge....