然而,当apply函数的结果是一个 Series 时,Pandas 会自动将结果转置。这是因为 Pandas 设计的初衷是让每一列代表一个变量,每一行代表一个观察值。 如果你希望避免这种转置,你可以在aid函数中直接返回一个 Pandas Series,而不是一个元组。这样,apply函数就会将每一行的结果组合成一个新的 DataFrame,而不是转置它们。
然后,apply()方法将series中的每一个数据点都应用到km_to_miles()函数上。 在PandasDataFrame上实现apply()方法 我们现在将创建一个假的DataFrame,以了解我们如何在DataFrame中使用apply()方法进行行和列操作。我们要创建的假DataFrame包含了学生的详细信息,使用的代码如下。 代码: studentinfo=pd.DataFrame({'STUDENT...
DataFrame['columnName'].apply(function) 直接在apply中运用函数,可以使用python内置函数也可以使用自定义函数,如data.loc[:,'A'].apply(str),将A列所有数据转为字符串;data.loc[:,'A'].apply(float),将A列所有数据转为浮点型等等; 所有示例使用以下数据集: data = pd.DataFrame([[1,2],[3,4],[5,...
Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns(``axis=1``). 传递给函数的对象是Series对象,其索引是DataFrame的索引(axis=0)或DataFrame的列(axis=1)。 By default (``result_type=None``), the final ret...
Pandas是一个基于Python的数据分析库,提供了丰富的数据结构和数据分析工具。其中,apply函数是Pandas中的一个重要函数,用于对DataFrame中的数据进行自定义的处理和转换。 apply函数的使用方法如下: 代码语言:txt 复制 df.apply(func, axis=0) 其中,df是一个DataFrame对象,func是一个自定义的函数,axis参数指定了apply函...
我正试图使用.apply创建一个dataframe,其中包含以下函数的串联结果,该函数只需提取选项数据并将其放入表格中 import pandas as pd import yfinance as yf def get_opt_data(ticker, expiration): try: data = yf.Ticker(ticker) calls = data.option_chain(expiration).calls ...
apply中有一个参数是reduce,文档如下。它的作用就是,当DataFrame为空的时候,使用reduce来确定返回的类型。 1. None 默认,让pandas直接去猜 2. True,总是返回Series 3. False,总时返回DataFrame 注意:在0.23.0版本后,要需要让result_type='reduce'才能生效。(所以我说要看不同版本各自的文档) ...
DataFrame对象的apply方法有非常重要的2个参数。 第1个参数的数据类型是函数对象,是将抽出的行或者列作为Series对象,可以利用Series对象的方法做聚合运算。 第2 个参数为关键字参数axis,数据类型为整型,默认为0。当axis=0时,会将DataFrame中的每一列抽出来做聚合运算,当axis=1时,会将DataFrame中的每一行抽出来做聚...
定义:第一个参数是 DataFrame的行或者列,第二个参数是可以 使用:这个函数不带任何括号地传递给apply()方法 其他参数 args=(2,) split-apply-combine”(拆分-应用-合并)很好地描述了分组运算的整个过程 pandas apply: 传入def定义的常规具名函数,传入匿名函数 ...
pandas中apply函数的用法是对DataFrame或Series中的每个元素应用一个自定义函数,并返回一个新的DataFrame或Series。 例如,假设有一个DataFrame df,需要对其中的每个元素进行求平方的操作,可以使用apply函数如下: import pandas as pd df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]}) ...