df_between,df_within)# 创建ANOVA表anova_table=pd.DataFrame({'Source':['Between Groups','Within Groups','Total'],'SS':[ssb,sse,sst],'df':[df_between,df_within,df_between+df_within],'MS':[ms_between,ms_within,None],'F':[f_value,None,None],'p-value':[p_value...
Python 实现 ANOVA 表 首先,我们需要安装必要的库。可以使用以下命令进行安装: pipinstallscipy statsmodels pandas 1. 接下来,我们可以使用以下代码来完成单因素 ANOVA 的计算: importpandasaspdimportscipy.statsasstatsimportstatsmodels.apiassmfromstatsmodels.formula.apiimportols# 创建一个示例数据集data={'group':[...
importscipy.statsasstats# stats f_oneway functions takes the groups as input and returns ANOVA F and p valuefvalue,pvalue=stats.f_oneway(df['A'],df['B'],df['C'],df['D'])print(fvalue,pvalue)# 17.492810457516338 2.639241146210922e-05# get ANOVA table as R like outputimportstatsmodels...
AI代码解释 >data(litter,package='multcomp')>attach(litter)>table(dose)dose055050020191817>aggregate(weight,by=list(dose),FUN=mean)Group.1x1032.308502529.3084235029.86611450029.64647>fit<-aov(weight~gesttime+dose)>summary(fit)Df Sum Sq Mean SqFvaluePr(>F)gesttime1134.3134.308.0490.00597**dose3137.145...
# 方差分析 price_lm=ols('销量~C(广告)+C(价格)',data=df_t2).fit()table=sm.stats.anova_lm(price_lm,typ=2) 即是不同价格和广告都会对销量有显著差异 代码语言:javascript 代码运行次数:0 运行 AI代码解释 fig=interaction_plot(df_t2['广告'],df_t2['价格'],df_t2['销量'],ylabel='销量',...
posthocs = pg.pairwise_ttests(dv='Scores', within='Time', between='Group', subject='Subject', data=df) pg.print_table(posthocs) which gives us (note that for display purpose I removed some rows and columns from the original table):...
fit() anova_table_1 = anova_lm(model, typ = 2).reset_index() p1=anova_table_1.loc[0,'PR(>F)'] #输出 : 是否相等【不等式序列】 if p1>alpha_anova: print('组间【无】显著差异') else: print('组间【有】显著差异') #输出不等式 # 输出: 统计结果表(均值,分位数,差异组) df_p1=...
正态性假定 方差齐性假定 如果不满足上述两个条件,可以采用基于秩和的非参数检验,如Kruskal-Wallis检验...
Logs check_circle Successfully ran in 14.0s Accelerator None Environment Latest Container Image Output 0 B Something went wrong loading notebook logs. If the issue persists, it's likely a problem on our side.RefreshTypeError: Failed to fetch...
Running a simple descriptives table immediately tells us the mean IQ scores for these samples. The result is shown below.For making things clearer, let's visualize the mean IQ scores per school in a simple bar chart.Clearly, our sample from school B has the highest mean IQ - roughly 113 ...