anchor-based 的目标检测算法难以端到端训练:一个目标会对应多个anchor box,需要使用后处理 NMS 抑制掉重复的 box,这种后处理是难以微分的, 因而大多数检测器不是端到端的训练。 centernet优点: (1)每个目标使用 bbox中心点表示,目标尺寸、方位、姿态等其他属性,从位于中心位置的图像特征回归得到。 (2)将图片输入...
(1)基于角点的anchor free目标检测 (2)基于中心点的anchor free目标检测算法 (3)基于全卷积的anchor free目标检测 (1)基于角点的anchor free目标检测 基于角点的目标检测方法通过组合从特征图中学习到的角点对, 来预测边框. 这种方法不需要设计锚框, 减少了对锚框的各种计算, 从而成为生成高质量边框的更有效的方...
(1)基于角点的anchor free目标检测 (2)基于中心点的anchor free目标检测算法 (3)基于全卷积的anchor free目标检测 (1)基于角点的anchor free目标检测 基于角点的目标检测方法通过组合从特征图中学习到的角点对, 来预测边框. 这种方法不需要设计锚框, 减少了对锚框的各种计算, 从而成为生成高质量边框的更有效的方...
早期目标检测研究以anchor-based为主,设定初始anchor,预测anchor的修正值,分为two-stage目标检测与one-stage目标检测,分别以Faster R-CNN和SSD作为代表。后来,有研究者觉得初始anchor的设定对准确率的影响很大,而且很难找到完美的预设anchor,于是开始不断得研究anchor-free目标检测算法,意在去掉预设anchor的环节,让网络自...
RepPoints是一个点集,能够自适应地包围目标并且包含局部区域的语义特征。论文基于RepPoints设计了anchor-free目标检测算法RPDet,包含两个识别阶段。因为可变形卷积可采样多个不规则分布的点进行卷积输出,所以可变形卷积十分适合RepPoints场景,能够根据识别结果的反馈进行采样点的引导。
提高网络收敛速度和精度:对于目标检测算法,主要需要关注的是对应着真实物体的正样本,在训练时会根据其loss来调整网络参数。相比之下, 负样本对应着图像的背景,如果有大量的负样本参与训练,则会淹没正样本的损失,从而降低网络收敛的效率与检测精度。 三、anchor-free和anchor-based ...
一、anchor free 概述 1、 先要知道anchor 是什么(这需要先了解二阶段如faster rcnn,一阶检测器如YOLO V2以后或SSD等)。 在过去,目标检测通常被建模为对候选框的分类和回归,不过,按照候选区域的产生方式不同,分为二阶段(two-step)检测和单阶段(one-step)检测,前者的候选框通过RPN(区域推荐网络)网络产生proposa...
其实anchor-free不是一个很新的概念,最早可以追溯到YOLO算法,这应该是最早的anchor-free模型,而最近的anchor-free方法主要分为基于密集预测和基于关键点估计两种。 早期研究 先是聊一聊目标检测比较古老的研究,分别是Densebox和YOLO,前者发表于2015年9月,后者则开源于2016年。
早期目标检测研究以anchor-based为主,设定初始anchor,预测anchor的修正值,分为two-stage目标检测与one-stage目标检测,分别以Faster R-CNN和SSD作为代表。后来,有研究者觉得初始anchor的设定对准确率的影响很大,而且很难找到完美的预设anchor,于是开始不断得研究anchor-free目标检测算法,意在去掉预设anchor的环节,让网络自...