(2)基于中心点的anchor free目标检测算法 (3)基于全卷积的anchor free目标检测 (1)基于角点的anchor free目标检测 基于角点的目标检测方法通过组合从特征图中学习到的角点对, 来预测边框. 这种方法不需要设计锚框, 减少了对锚框的各种计算, 从而成为生成高质量边框的更有效的方法. 基于角点的anchor free目标检测模...
(1)基于角点的anchor free目标检测 (2)基于中心点的anchor free目标检测算法 (3)基于全卷积的anchor free目标检测 (1)基于角点的anchor free目标检测 基于角点的目标检测方法通过组合从特征图中学习到的角点对, 来预测边框. 这种方法不需要设计锚框, 减少了对锚框的各种计算, 从而成为生成高质量边框的更有效的方...
在 anchor-based 的方法中,虽然每个位置可能只有一个 anchor,但预测的对象是基于这个 anchor 来匹配的,而在 anchor-free 的方法中,通常是基于这个点来匹配的。 3. anchor-free 的局限性 虽然上面几种方法的精度都能够与 RetinaNet 相媲美,但也没有明显优势(或许速度上有),离两阶段和级联方法相差仍然较远。和 ...
与Anchor-based方法不同,Anchor-free方法不需要预先设定矩形框,而是直接在图像中进行目标检测。这种方法更加灵活,避免了Anchor-based方法中由于矩形框大小和比例不合适导致的检测效果不佳的问题。 代表算法有YOLOv1、CornerNet、CenterNet等。这些算法通常将目标检测视为一个回归问题,直接在图像上预测目标的位置和类别。由...
Guided Anchoring 可以看做是 anchor-prior-free,但是整体框架保持与 anchor-based 一致,所以可以插入到现有的 anchor-based 的方法里面,性能提升也会稍微明显一点。类似于在首先进行 anchor-free 的预测,然后以预测结果作为 anchor 进行进一步地修正。 展望
1、指出基于Anchor-based的目标检测器和Anchor-free的检测器之间的本质区别实际上是如何定义正样本和负样本。 2、提出一种自适应训练样本选择算法,以根据目标的统计特性自动选择正样本和负样本。在图像上的每个位置使用多个Anchors来检测目标是无用的操作。
作者通过试验证明了,anchor-base和anchor-free的gap主要来自于第一点:classification,及核心区别在于二者正负样本的选取方式不同。具体有什么样的不同,如下图: 第一...提出了anchor-based和anchor-free检测器的显著区别主要在于如何定义正、负训练样本,从而导致两者之间的性能差距。如果他们在训练中对正样本和负样本采...
从anchor回归属于anchor-based类,代表如faster rcnn、retinanet、YOLOv2 v3、ssd等, 从point回归属于anchor-free类,代表如cornernet、extremenet、centernet等, 二者融合代表如fsaf、sface、ga-rpn等。 四、典型算法 1、MTCNN 论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks ...
anchor-based类算法的代表有fasterRCNN、SSD、YoloV2/V3/V4等。 anchor-based类算法的主要步骤有:生成anchor box,确定正负样本,回归相对偏移量,分类目标类别。 趋势 YOLOX是一个新的anchor free目标检测器,它结合了YOLO系列的优点和anchor free机制的简洁性,同时引入了SimOTA样本匹配策略和自适应标签平滑技术,实现了...
论文题目:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection 论文地址:https://arxiv.org/abs/1912.02424 ATSS简单来说就是 (1) 对于anchor-free典型算法FCOS,希望消除回归范围regress_ranges和中心扩展比例参数center_sample_radius这两个核心超参,使其在anchor...