AMS_2010 Mathematics Subject Classification 下载积分: 1500 内容提示: MSC2010: Final Public Version [Oct. 2009]MSC2010This document is a printed form the Final Public Version of MSC2010 producedjointly by the editorial staf f s of Mathematical Reviews (MR) and Zentralblatt fürMathematik (Zbl) ...
AMS Subject classification (2010): Primary 60J65; Secondary 35K20 key words: heat kernel; exterior domain; transition probability 来自 arXiv.org 喜欢 0 阅读量: 737 作者:Oh-okayama,M Tokyo 摘要: We study the transition density of a standard two-dimensional Brownian motion killed when hitting ...
ams mathematical subject classification AMS 数学主题分类(AMS Mathematical Subject Classification)是美国数学学会(American Mathematical Society)制定的一种数学主题分类系统,用于对数学研究领域进行分类和组织。 AMS 数学主题分类系统包括一个层次结构的分类表,其中每个主题都被分配一个特定的分类代码。这些代码由一系列...
AMS Subject Classification: 13F60, 16G20 来自 combinatorics.net 喜欢 0 阅读量: 29 作者: K Lee 摘要: Sherman, P., Zelevinsky, A.: Positivity and canonical bases in rank 2 cluster algebras of finiteand affine types. Moscow Math. J. 4(4), 947–974 (2004). 13. Qin, F.: Quantum...
please provide ams subject classification codes 请提供AMS项目(主题)分类码
AMS subject classifications美国数学分类号
Il f: R --* R is a quasiconformal homeomorphism of Riemann surfaces, then Marden showed that / naturally induces an isomorphism of the corresponding Hilbert spaces of square integrable first-order differential forms. It is demonstrated that this isomorphism preserves many important subspaces. Prelimina...
has full rank n.The matrix (2) is the walk-matrix in graph theory in the case that b is the all-one vector and A is the adjacency matrix of a graph.Generally, in control theory, we do not assume any special structure or property of the matrix A and the vector b. However control...
内容提示: Mathematics Subject Classification 2000Mathematics Subject Classification 2000 (MSC2000)This is a completely revised version of the MSC, preparedcollaboratively in the editorial offices of MR and ZentralblattMATH. It replaces the 1991 MSC and is effective (in MR) withthe January 2000 issue...
AMS Mathematics Subject Classification (2000): 05C50 Key Words: Spectrum (of graph), Laplacian spectrum (of graph), Estrada index, Laplacian–Estrada index By Proposition 2, if G is a connected r-regular graph, then EE(L(G)) = EE(G) if and only if r = 1, 2 and G is a cycle ...