克鲁斯卡算法https://www.zhihu.com/video/1469708852803825664 视频中讲解的素材在下方: 如果你有其他相关问题或想要了解的知识点内容,可以在评论区、或是私信留言。 我们将通过回复你的留言为你解答,或是通过下一期的名师大讲堂为你讲解。请耐心等待! 英尚小助手在主页哦~发布...
m;inti,j;intparent[maxn];structedge{intu;//边的顶点intv;intw;//weight 权值}edge[maxn];classKruskal{public://实现并查集voidufset()//初始化parent数组{for(inti=1;i<=n;i++){parent[i]=-1;}}//
x : fa[x] =find(fa[x]); }voidkruskal() { sort(e+1, e + m +1);for(inti =1; i <= n; i++) fa[i] =i;for(inti =1; i <= m; i++) {intfu = find(e[i].u), fv =find(e[i].v);if(fu !=fv) { val[++cnt] =e[i].w; fa[cnt]= fa[fu] = fa[fv] =cnt...
Property 3: If there are n elements overall, there can be at most n/2knodes of rank k. 如果一共有n个节点,那么rank 为k的连通支一共有n/2k个 对property2的解释:因为union的原则是让union后的树rank最小,所以union后的树至少是二叉树,也就是说除叶子节点外的节点至少有两个孩子。 对property3的...
[xroot] += 1 # Applying Kruskal algorithm def kruskal_algo(self): result = [] i, e = 0, 0 self.graph = sorted(self.graph, key=lambda item: item[2]) parent = [] rank = [] for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v,...
12-3: Kruskal算法 寻找最小生成树 Kruskal's Algorithm for Minimum Spanning Trees 234 -- 2:20 App 数据结构之图的应用-kruskal克鲁斯卡尔算法球最小生成树 4643 2 4:21 App 画迷宫——随机prim算法 13 -- 13:05 App Minimum Spanning Tree introduction 37.8万 3101 10:58 App 『教程』什么是递归...
04_Kruskals_Algorithm_12-28是[双语字幕] Princeton University : Algorithms 算法 by Robert Sedgewick的第73集视频,该合集共计123集,视频收藏或关注UP主,及时了解更多相关视频内容。
* */ public void kruskalMST() { resetMemo(); //找出所有crossing edges findAllCrossingEdges(); //初始化并查集 FastUnionFind uf = new FastUnionFind(vertexCount()); //算法用贪心策略,每一步都挑选最轻的边来加入mst //需要注意的是,在加入mst之前要考察边的两端顶点是否形成环路 while (!this....
Kruskal's Algorithm is an algorithm used to find the minimum spanning tree in graphical connectivity that provides the option to continue processing the least-weighted margins. In the Kruskal algorithm, ordering the weight of the ribs makes it easy to find the shortest path. This algorithm is ...
Kruskal's Spanning Tree Algorithm - Learn about Kruskal's Spanning Tree Algorithm, its step-by-step process, and how it is used to find the minimum spanning tree in weighted graphs.