}staticintgetMin(inta[],intn) {intmin = a[0];for(inti =0; i < n; i++) {if(a[i] <min) { min=a[i]; } }returnmin; }staticvoidcountingSort(inta[],intn,intunused[]) {intmin =getMin(a, n) , max=getMax(a, n) , idxLen=
}printf("\nAfter sorting array elements are: ");for(i=0;i<n;i++)printf("%d ",output[i]);}voidmain(){intn,i;inta[]={12,32,44,8,16};n=sizeof(a)/sizeof(a[0]);printf("Before sorting array elements are: ");for(inti=0;i<n;i++){printf("%d ",a[i]);}countingsort(a...
//1、Bubble Sort 冒泡排序 void bubbleSort(int a[], int length) { if (length < 2) return; for (int i = 0; i < length - 1; i++) //需length-1趟排序确定后length-1个数,剩下第一个数不用排序; { for (int j = 0; j < length - 1 - i; j++) { if (a[j + 1] < a[...
counting_sort.py def counting_sort(arr): max_val = max(arr) count = [0] * (max_val + 1) for num in arr: count[num] += 1 sorted_arr = [] for i in range(len(count)): sorted_arr.extend([i] * count[i]) return sorted_arr # Example usage arr = [4, 2, 2, 8, 3, ...
def counting_sort(the_list, max_value): # Count the number of times each value appears. # counts[0] stores the number of 0's in the input # counts[4] stores the number of 4's in the input # etc. counts = [0] * (max_value + 1) for item in the_list: counts[item] += ...
Implementation of the technique of Space minimization for Counting Sort algorithmToday we consider the question of whether it is possible to sort without the use of comparisons. They answer is yes, but only under very restrictive circumstances. Many applications involve sorting small integers (e.g....
//1、Bubble Sort 冒泡排序voidbubbleSort(inta[],intlength){if(length <2)return;for(inti =0; i < length -1; i++)//需length-1趟排序确定后length-1个数,剩下第一个数不用排序;{for(intj =0; j < length -1- i; j++) {if(a[j +1] < a[j]) ...
Working of Counting Sort Find out the maximum element (let it bemax) from the given array. Given array Initialize an array of lengthmax+1with all elements 0. This array is used for storing the count of the elements in the array.
const bubbleSort = () => { for (let i = 0; i < data.length; i++) { let flag = true; for (let j = 0; j < data.length - i - 1; j++) { if (data[j] > data[j + 1]) { flag = false; const temp = data[j]; ...
计数排序(COUNTING-SORTING) 计数排序的思想: 计数排序是对每一个输入元素x;确定小于x的元素个数。 计数排序算法: 第一个for循环为统计arra 中的每一个数值的个数,并且放在相应arrc 数组中的arra[i]位,第二个for循环为了统计arrc[j]位以前有多少个数小于或等于arrac[j] 的数字,遍历arra[k],把对应 的arra...