The first in this series is the American Invitational Mathematics Exam (AIME), followed by the USA Mathematical Olympiad and Junior Mathematical Olympiad (USAMO and USAJMO). Download the AIME problems and solutions below: 2001: AIME I - Problems | Solutions AIME II - Problems | Solutions ...
每一道题的答案都是从 0 到 999 的一个数,而且题目都出得非常精妙,推荐题主参加;下面是历年的题和答案:https://artofproblemsolving.com/wiki/index.php?title=AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_Problems_and_Solutions ✨简介: AoPSOnline 历年真题网站真的是AMC考生们的神仙宝藏网站,不仅真题覆盖十分全面,包含AMC8/10/12、AIME、USAMO的真题,而且每道题都有对应的解析,超链接全面覆盖,点击...
AMC historical results AMC Problems and Solutions AoPSOnline官网进入AoPSOnline官网,你会看见AMC竞赛22年(1999年-2021)的考试分数线,相比前面推荐的AMC官网提供的AMC晋级分数线来看,不得不夸一下AoPSOnline网站的真的很赞!特别推荐同学们在刷题的过程中可以从中参考,评估下自身的AMC竞赛能力水平!图片来自:AoPSOnline...
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions 希望以上经验对同学们有所帮助,祝大家都能取得好成绩~ TD福利领取方式 长按识别二维码添加马甲微信(已有小马甲的同学无需重复添加啦),并回复关键词「2023AMC」即可进入2023AMC备赛...
AIME Problems 9In triangle ABC AB 13 BC 15 and CA 17 Point D is on AB E is on BC and F is on CA Let AD p AB BE q BC and CF r CA where p q and r are positive and satisfy p q r 2 3 and p2 q2 r2 2 5 The ratio of the area of triangle DEF to the area of ...
Aimenicorn’s Multimodal Solutions Lead the Evolution › Established in 2018, Aimesoft has defined our vision to become a leading company in providing AI services and solutions to the global market. Multimodal AI combines multiple input sources (text, voice, image, numerical data, etc) and var...
integersasmnmandpositivedigitsprime AIMEProblems2020 –I –March11,2020 1InABCwithAB=AC,pointDliesstrictlybetweenAandConsideAC,andpointElies strictlybetweenAandBonsideABsuchthatAE=ED=DB=BC.Thedegreemeasure of∠ABCis m n ,wheremandnarerelativelyprimepositiveintegers.Findm+n. 2Thereisauniquepositivere...
AIME-I-十年真题(附答案).doc,Problem 1 Call a -digit number geometric if it has distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers. Problem 2 There is a co