AI+Science 是近年兴起的将人工智能和科学相结合的一种趋势。一方面是 AI for Science,机器学习和其他 AI 技术可以用来解决科学研究中的问题,从预测天气和蛋白质结构,到模拟星系碰撞、设计优化核聚变反应堆,甚至像科学家一样进行科学发现,被称为科学...
近日,来 TAMU、 MIT、Stanford、UIUC、NVIDIA 等14个机构的63位作者合作撰写了一篇263页的 AI for Science 重磅综述,详细阐述了 AI 在亚原子(波函数、电子密度),原子(分子、蛋白质、材料、相互作用),以及宏观系统(流体、气候、地...
人工智能(AI)正越来越多地融入科学发现,以增强和加速研究,帮助科学家产生假设,设计实验,收集和解释大型数据集,并获得仅使用传统科学方法可能无法获得的见解。最近《Nature》发表的一篇综述对AI for science 进行了全面介绍。生成式人工智能方法可以通过分析各种数据模式(包括图像和序列)来创建设计,例如小分子药物和蛋白质...
人工智能(AI)正越来越多地融入科学发现,以增强和加速研究,帮助科学家产生假设,设计实验,收集和解释大型数据集,并获得仅使用传统科学方法可能无法获得的见解。最近《Nature》发表的一篇综述对AI for science 进行了全面介绍。生成式人工智能方法可以通过分析各种数据模式(包括图像和序列)来创建设计,例如小分子药物和蛋白质...
AI+Science 读书会 AI+Science 是近年兴起的将人工智能和科学相结合的一种趋势。 一方面是 AI for Science,机器学习和其他 AI 技术可以用来解决科学研究中的问题,从预测天气和蛋白质结构,到模拟星系碰撞、设计优化核聚变反应堆,甚至像科学家一样进行科学发现,被称为科学发现的“第五范式”。 另一方面是 Science fo...
2010年代第三波AI浪潮的标志性事件之一:Deep Learning三巨头发表在Nature上的综述 AI for Science无疑...
岁序更替,华章日新。在刚刚过去的 2023 年中,AI for Science 带来了太多惊喜,也埋下了更具想象空间的种子。 从2020 年开始,以 AlphaFold 为代表的科研项目将 AI for Science 推向了 AI 应用的主舞台。两年来,从生物医药到天文气象、再到材料化学等基础学科,都成为了 AI 的新战场。在这个过程中,AI 的能力也...
在“Scientific discovery in the age of artificial intelligence”这篇三位华人一作、Yoshua Bengio领衔的论文中,作者详解了自监督学习、几何深度学习、生成式人工智能等技术在科学研究中的应用,并提出了目前AI跨界仍存在的核心问题,目前该论文已刊于Nature综述文章。来看大佬如何总结AI for Science。十年科学发现中AI...
反过来,对于数字观测数据的处理——也就是今天的AI for Science做得比较好的,每一个方向的处理同质性并不是很大,比如说AlphaGo做的实验和化学实验是完全不同的,所以泛化性有点区别,所以这一块可以一步步来,把通用能力在科研中做起来,对于找问题、提假设通用的能力可以上到一个新的台阶,比GPT-4更上一个台阶。
2023 年 11 月,Nature 连续刊登了两篇重大成果:蛋白质生成方法 Chroma 和晶体材料设计方法 GNoME,均使用了图神经网络作为科学数据的表示工具。 实际上,图神经网络,特别是几何图神经网络,一直是科学智能(AI for Science)研究的重要工具。这是因为,科学领域中的粒子、分子、蛋白质、晶体等物理系统均可被建模成一种特...