值得注意的是,训练 AI 模型时候所需要的内存一般比模型参数量还要多几倍。这是因为训练时候需要保存中间层的输出激活值,通常需要增加3到4倍的内存占用。图表3中展示了最新的 AI 模型训练时候,内存占用大小逐年的增长变化趋势。从中能清楚地看到,神经网络模型的设计是如何受 AI 硬件内存大小影响的。这些挑战也就...
深入思考这些数字,过去20年内硬件算力峰值增长了90000倍,但是DRAM/硬件互连带宽只增长了30倍。在这个趋势下,数据传输,特别是芯片内或者芯片间的数据传输会迅速成为训练大规模 AI 模型的瓶颈。所以我们需要重新思考 AI 模型的训练,部署以及模型本身,还要思考,如何在这个越来越有挑战性的内存墙下去设计人工智能硬件。
大家可能会想到,是否可以尝试采用分布式的策略将训练扩展到多个 AI 硬件(GPU)上,从而突破于单个硬件内存容量和带宽的限制。然而这么做也会遇到内存墙的问题:AI 硬件之间会遇到通信瓶颈,甚至比片上数据搬运更慢、效率更低。和单设备的内存墙问题类似,扩展 AI 硬件之间的网络带宽的技术难题同样还未被攻破。如图表4所示...
AI硬件设计上,需要同时提高带宽和算力,通过优化缓存结构和DRAM层次结构,以提高内存访问速度,解决分布式内存通信瓶颈。此外,考虑介于CPU和GPU之间的架构,以实现更好的算力/带宽平衡。综上,AI领域面临的内存墙问题要求我们重新思考AI模型的设计、训练算法、部署方法以及硬件架构。通过引入高效训练算法、优化...
作者| Amir Gholami 责编 | 欧阳姝黎出品 | OneFlow社区这篇文章是我(Amir Gholami), Zhewei Yao,Sehoon Kim,Mic... 作者:csdnne…
深入思考这些数字,过去20年内硬件算力峰值增长了90000倍,但是DRAM/硬件互连带宽只增长了30倍。在这个趋势下,数据传输,特别是芯片内或者芯片间的数据传输会迅速成为训练大规模 AI 模型的瓶颈。所以我们需要重新思考 AI 模型的训练,部署以及模型本身,还要思考,如何在这个越来越有挑战性的内存墙下去设计人工智能硬件。
深入思考这些数字,过去20年内硬件算力峰值增长了90000倍,但是DRAM/硬件互连带宽只增长了30倍。在这个趋势下,数据传输,特别是芯片内或者芯片间的数据传输会迅速成为训练大规模 AI 模型的瓶颈。所以我们需要重新思考 AI 模型的训练,部署以及模型本身,还要思考,如何在这个越来越有挑战性的内存墙下去设计人工智能硬件。