在今天分享中,研究者提出了一种改进的特征金字塔模型,命名为AF-FPN,它利用自适应注意力模块(AAM)和特征增强模块(FEM)来减少特征图生成过程中的信息丢失并增强表示能力的特征金字塔。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的...
改进后的YOLOv5s网络结构如下图所示。 AF-FPN structure AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前一部分由于减少了特征通道,减少了在高层特征图中上下文信息的丢失;后一部分增强了特征金字塔的表示并加快了推理速度,同时实现了最先进的性能。AF-FPN的结构如下图所示...
在今天分享中,研究者提出了一种改进的特征金字塔模型,命名为AF-FPN,它利用自适应注意力模块(AAM)和特征增强模块(FEM)来减少特征图生成过程中的信息丢失并增强表示能力的特征金字塔。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的...
在今天分享中,研究者提出了一种改进的特征金字塔模型,命名为AF-FPN,它利用自适应注意力模块(AAM)和特征增强模块(FEM)来减少特征图生成过程中的信息丢失并增强表示能力的特征金字塔。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的...
改进的YOLO,AF-FPN替换金字塔模块,提升目标检测精度#人工智能 #ai #论文 #目标检测算法 #yolov5 - 学算法的Amy于20230401发布在抖音,已经收获了13.5万个喜欢,来抖音,记录美好生活!
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集并提高模型的鲁棒性,使其更适合实际场景。在Tsinghua-Tencent 100K (TT100K) 数据集上的大量实验结果证明了与几种最先进的方法相比所提出的方法的...
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集并提高模型的鲁棒性,使其更适合实际场景。在Tsinghua-Tencent 100K (TT100K) 数据集上的大量实验结果证明了与几种最先进的方法相比所提出的方法的...
在今天分享中,研究者提出了一种改进的特征金字塔模型,命名为AF-FPN,它利用自适应注意力模块(AAM)和特征增强模块(FEM)来减少特征图生成过程中的信息丢失并增强表示能力的特征金字塔。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的...
改进的YOLOv5:AF-FPN替换金字塔模块提升目标检测精度 随着世界迈向第四次工业革命,电动车越来越普遍,但是路上的交通标志也五花八门,如果利用计算机视觉技术可以全部检测识别,那也是一大进步! 一、前言 交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务,特别是对于多尺度目标的检测和检测的...
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集并提高模型的鲁棒性,使其更适合实际场景。在Tsinghua-Tencent 100K (TT100K) 数据集上的大量实验结果证明了与几种最先进的方法相比所提出的方法的...