We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages clean and adversarial samples to optimize the initialization of a learning model in an adversarial manner. ADML leads to the following desirable properties: 1) it turns out to be very effective even in the ...
Adversarial Meta-LearningChengxiang YinJian TangZhiyuan XuYanzhi Wang
分享一下收集自己看过的关于Adversarial Training 、Knowledge Distillation、Meta-Learning方向的一些paper. 持续更新~ 欢迎Star https://github.com/xuanzebi/Paper-Knowledge_Distillation-Adversarial_Trainin…
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieved state-of-the-art performance. However, existing solutions heavily rely on the exploitation of lexical features and their distributional signatures on training data, while neglecting to strengthen the mo...
而且真的,我觉得有对数据集强行过拟合的嫌疑。但是,从一些论文我们可以看出,如果从meta-learning的角度来看,这个问题或许在某种程度上是等价的,也许用meta-learning的角度来说更有说服力?(我觉得也不尽然,meta-learning比我想象的,更……随意一点) DeepFool: a simple and accurate method to fool deep neural ...
Topological Adversarial Attacks on Graph Neural Networks Via Projected Meta Learningdoi:10.1109/EAIS58494.2024.10569101Graph Neural Networks (GNNs) have ... M Aburidi,R Marcia - IEEE International Conference on Evolving & Adaptive Intelligent Systems 被引量: 0发表: 0年 Defending against adversarial at...
【动作生成】AnySkill: Learning Open-Vocabulary Physical Skill for Interactive Agents 830 -- 0:56 App 【动作生成】CLoSD Diffusion for multi-task character control 320 -- 2:30 App 【人体重建】CVPR2024 GuassianAvatar Towards Realistic Human Avatar Modeling from a Sin 377 -- 0:41 App 【具身智能...
Paper tables with annotated results for Improving the Generalization of Meta-learning on Unseen Domains via Adversarial Shift
图神经网络论文笔记2:Adversarial Attacks on Graph Neural Networks via Meta Learning(Metattack) Abner OOD / LLM / 3DV / 25Fall9 人赞同了该文章 这篇文章提出了一种针对节点分类的攻击,属于灰盒无差别攻击,能够用于攻击的信息有:所有节点的属性、图结构以及子集的标签。首先,作者提出了两种攻击损失函数的形式...
5. Improving the Robustness of Wasserstein Embedding by Adversarial PAC-Bayesian Learning 会议:AAAI 2020. AAAI Technical Track: Machine Learning. 作者:Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, Xiangnan He 链接:https://aaai.org/ojs/index.php/AAAI/article/view/5790/5646 ...