GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes a prior on the latent variable z. Howerver, instead of maximizing the evidence lower bound (ELBO) like VAE, AAE utilizes a adversarial network structure to guides the model distr...
If you want to get your hands into the Pytorch code, feel free to visit theGitHub repo. Along the post we will cover some background on denoising autoencoders and Variational Autoencoders first to then jump to Adversarial Autoencoders, a Pytorch implementation, the training procedure followed ...
Adversarial Autoencoders(1) 参考文献:arxiv.org/pdf/1511.0564 duvenaud.github.io/lear Alireza Makhzani Jonathon Shlens & Navdeep Jaitly Ian Goodfellow Brendan Frey 摘要 在本文中,我们提出了“对抗自动编码器(adversarial autoencoder)”(AAE),这是一种概率自动编码器(probabilistic autoencoder),它使用最近...
-项目源码https://github.com/podgorskiy/ALAE 摘要 自动编码器网络是无监督的方法,旨在通过同时学习编码器-生成器映射来结合生成性和代表性。尽管进行了广泛的研究,但它们是否具有与遗传基因相同的生成能力,或者学习如何解开表征的问题还没有得到充分的解决。我们引入了一种联合处理这些问题的自动编码器,我们称之为对...
Paper Name: Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) Github: https://github.com/ZZUTK/Face-Aging-CAAE But count some issues before I run the code successfully. Maybe it caused by the version of tensorflow. ...
To solve the above two problems, we propose a self-adversarial variational autoencoder (adVAE) with a Gaussian anomaly prior assumption. We assume that both the anomalous and the normal prior distribution are Gaussian and have overlaps in the latent space. Therefore, a Gaussian transformer net T...
perimentsisavailableinh ps://github/luckycallor/CDAAE. CCSCONCEPTS •Computingmethodologies→Computervision;Neuralnet- works;Learninglatentrepresentations;Knowledgerepresenta- tionandreasoning; KEYWORDS Auto-encoder,cross-domaintransformation,domainadaptation, semi-supervisedlearning 1INTRODUCTION Appealingresultshave...
In contrast to previously used generative models, such as Variational Auto Encoders (VAEs),21,22 GANs managed to generate sharp images and consequently gained popularity in the machine learning community.23 VAEs and other generative models relying on log-likelihood optimization are prone to ...
Kos 等人 [95] 和 Tabacof 等人 [96] 提出了生成模型的对抗样本。自编码器(autoencoder)的攻击者可以将扰动注入编码器的输入,并在解码后生成目标类别。图 4 展示了自编码器的目标对抗样本。在编码器的输入图像上添加扰动,可以通过使解码器生成目标对抗输出图像来误导自编码器。