如果我们去掉异步,则为优势演员-评论员(advantage actor-critic,A2C)算法。A2C算法又被译作优势演员-评论员算法。如果我们加了异步,变成异步优势演员-评论员算法。 1.策略梯度回顾 我们复习一下策略梯度,在更新策略参数 $\theta$ 的时候,我们可以通过 (6.1)∇R¯θ≈1N∑n=1N∑t=1Tn(∑t′=tTnγt′−...
1.核心词汇 优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用...
1.核心词汇 优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用...
如果我们去掉异步,则为优势演员-评论员(advantage actor-critic,A2C)算法。A2C算法又被译作优势演员-评论员算法。如果我们加了异步,变成异步优势演员-评论员算法。 1.策略梯度回顾 我们复习一下策略梯度,在更新策略参数 θ 的时候,我们可以通过 ∇¯Rθ≈1NN∑n=1Tn∑t=1(Tn∑t′=tγt′−trnt′−b...
借助于价值函数,演员-评论员算法可以进行单步参数更新,不需要等到回合结束才进行更新。在演员-评论员算法里面,最知名的算法就是异步优势演员-评论员算法。如果我们去掉异步,则为优势演员-评论员(advantage actor-critic,A2C)算法。A2C算法又被译作优势演员-评论员算法。如果我们加了异步,变成异步优势演员-评论员算法。
优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解...
优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解...
self.critic部分定义的是“评论家”,self.actor部分定义的是“演员”。“评论家”网络观察输入并“打分”,“演员”网络接收输入并给出行动的类别分布,这里用到了API——paddle.distribution.Categorical,后续调用sample(shape)生成指定维度的样本、调用entropy()返回类别分布的信息熵、调用log_prob(value)返回所选择类别...
本文主要阐述了深度强化学习中的Advantage Actor-Critic(A2C)算法。首先,回顾了策略网络(Actor)和价值网络(Critic)的基本概念。策略网络π(a|s;θ)负责决定在给定状态下采取何种动作,而价值网络v(s;w)则评估在给定状态下执行动作所能获得的期望奖励。A2C算法的训练流程与传统策略梯度方法有所不同...
优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解...