优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解...
2. 两个critic为了计算 Gtn 的期望值,这里先介绍两个critic,分别是state value function Vπ(s) 和state-action value function Qπ(s,a)。Qπ(st,at) :对于actor π ,它访问状态st并且采取动作at后,期望获得的累计奖励值。Vπ(st) :对于actor π ,它访问状态st后,期望获得的累计奖励值。也就是说, ...
Advantage Actor-Critic(A2C) 算法引入了并行架构,各个 worker 都会独立的跟自己的环境去交互,得到独立的采样经验,而这些经验之间也是相互独立的,这样就打破了经验之间的耦合,起到跟 Experiencre Replay 相当的效果。因此通常 A2C和A3C 是不需要使用 Replay Buffer 的,这种结构本身就可以替代了。关于...
在演员-评论员算法里面,最知名的算法就是异步优势演员-评论员算法。如果我们去掉异步,则为优势演员-评论员(advantage actor-critic,A2C)算法。A2C算法又被译作优势演员-评论员算法。如果我们加了异步,变成异步优势演员-评论员算法。 1.策略梯度回顾 我们复习一下策略梯度,在更新策略参数 $\theta$ 的时候,我们可以通...
可曾还记得2.1节介绍过的所谓Actor-Criti算法(一般被翻译为演员-评论家算法) Actor学习参数化的策略即策略函数,Criti通过学习一个状态价值函数,来尽可能准确地预测从当前状态开始,遵循某个策略可以获得的预期总回报(即未来的累积折扣奖励),并将其用于更好地拟合真实的回报,在学习过程中,Critic试图减小预测的价值和实际...
在REINFORCE算法中,每次需要根据一个策略采集一条完整的轨迹,并计算这条轨迹上的回报。这种采样方式的方差比较大,学习效率也比较低。我们可以借鉴时序差分学习的思想,使用动态规划方法来提高采样效率,即从状态
借助于价值函数,演员-评论员算法可以进行单步参数更新,不需要等到回合结束才进行更新。在演员-评论员算法里面,最知名的算法就是异步优势演员-评论员算法。如果我们去掉异步,则为优势演员-评论员(advantage actor-critic,A2C)算法。A2C算法又被译作优势演员-评论员算法。如果我们加了异步,变成异步优势演员-评论员算法。
本文主要阐述了深度强化学习中的Advantage Actor-Critic(A2C)算法。首先,回顾了策略网络(Actor)和价值网络(Critic)的基本概念。策略网络π(a|s;θ)负责决定在给定状态下采取何种动作,而价值网络v(s;w)则评估在给定状态下执行动作所能获得的期望奖励。A2C算法的训练流程与传统策略梯度方法有所不同...
异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解连续动作的算法,也是一种演员-评论员算法。其会对演员提供价值最大的动作,而不仅仅是提供某一个...
强化学习从基础到进阶-常见问题和面试必知必答[6]:演员-评论员算法(advantage actor-critic,A2C),异步A2C、与生成对抗网络的联系等详解 1.核心词汇 优势演员-评论员(advantage actor-critic,A2C)算法:一种改进的演员-评论员(actor-critic)算法。 异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:...