带有Baseline的AC方法即A2C方法 一、Actor and Critic 首先回顾一下策略网络Policy Network(Actor):π(a|s;θ) 再回顾一下价值网络Value Network(Critic):v(s;w) 整体的神经网络结构是这样的: 二、A2C的训练(Training of A2C) A2C的训练过程是这样的: 需要注意的是,A2C的神经网络参数更新与AC的神经网络参数更...
Actor学习参数化的策略即策略函数,Criti通过学习一个状态价值函数,来尽可能准确地预测从当前状态开始,遵循某个策略可以获得的预期总回报(即未来的累积折扣奖励),并将其用于更好地拟合真实的回报,在学习过程中,Critic试图减小预测的价值和实际经验回报之间的差距,以此来改进我们的策略「更多可以再看下ChatGPT原理技术解析...
self.critic部分定义的是“评论家”,self.actor部分定义的是“演员”。“评论家”网络观察输入并“打分”,“演员”网络接收输入并给出行动的类别分布,这里用到了API——paddle.distribution.Categorical,后续调用sample(shape)生成指定维度的样本、调用entropy()返回类别分布的信息熵、调用log_prob(value)返回所选择类别...
3 Advantage Actor-Critic 算法简介 这里直接引用David Silver的Talk课件。 我们要构造两个网络:Actor Network和Value Network 其中Actor Network的更新使用Policy Gradient,而Value Network的更新使用MSELoss。 关于Policy Gradient方法不了解的童鞋可以参考一下专栏之前的Blog。 4 实现 import torch import torch.nn as n...
异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解连续动作的算法,也是一种演员-评论员算法。其会对演员提供价值最大的动作,而不仅仅是提供某一个...
本文主要阐述了深度强化学习中的Advantage Actor-Critic(A2C)算法。首先,回顾了策略网络(Actor)和价值网络(Critic)的基本概念。策略网络π(a|s;θ)负责决定在给定状态下采取何种动作,而价值网络v(s;w)则评估在给定状态下执行动作所能获得的期望奖励。A2C算法的训练流程与传统策略梯度方法有所不同...
ACtor-critic 与Advantage Actor-Critic的区别: 1. 加载环境 2.构建多个进程,代码来自openai 3.创建并行环境 4.定义网络结构 5. 循环训练 5.1 定义测试函数,在训练中穿插使用,可以反应训练的程度。类似于深度学习中的验证集作用。 5.2 目标函数 5.3 绘图函数,展示指定帧的奖励 5.4 超参数、网络声明、优化器定义 ...
异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解连续动作的算法,也是一种演员-评论员算法。其会对演员提供价值最大的动作,而不仅仅是提供某一个...
借助于价值函数,演员-评论员算法可以进行单步参数更新,不需要等到回合结束才进行更新。在演员-评论员算法里面,最知名的算法就是异步优势演员-评论员算法。如果我们去掉异步,则为优势演员-评论员(advantage actor-critic,A2C)算法。A2C算法又被译作优势演员-评论员算法。如果我们加了异步,变成异步优势演员-评论员算法。
异步优势演员-评论员(asynchronous advantage actor-critic,A3C)算法:一种改进的演员-评论员算法,通过异步的操作,实现强化学习模型训练的加速。 路径衍生策略梯度(pathwise derivative policy gradient):一种使用Q学习来求解连续动作的算法,也是一种演员-评论员算法。其会对演员提供价值最大的动作,而不仅仅是提供某一个...