结论,如果单变量线性回归,则使用 R-squared评估,多变量,则使用adjusted R-squared。 在单变量线性回归中,R-squared和adjusted R-squared是一致的。 另外,如果增加更多无意义的变量,则 R-squared 和adjusted R-squared之间的差距会越来越大,Adjusted R-squared会下降。但是如果加入的特征值是显著的,则adjusted R-squ...
Adjusted R-Squared 抵消样本数量对 R-Squared 的影响,做到了真正的 0~1,越大越好。 因为在模型中,增加多个变量,即使事实上无关的变量,也会小幅度条R平方的值,当时其是无意义,所有我们调整了下,降低R平方的值。 简单地说就是,用r square的时候,不断添加变量能让模型的效果提升,而这种提升是虚假的。 利用a...
Adjusted R-Square 抵消样本数量对 R-Square的影响,做到了真正的 0~1,越大越好。 python中可以直接调用 from sklearn.metrics import mean_squared_error #均方误差 from sklearn.metrics import mean_absolute_error #平方绝对误差 from sklearn.metrics import r2_score#R square #调用 MSE:mean_squared_error(...
2. 校准决定系数Adjusted-R2 3.均方误差MSE(Mean Square Error) 4.均方根误差RMSE(Root Mean Square Error) 5.平均绝对误差MAE(Mean Absolute Error) 6. 平均绝对百分比误差MAPE(Mean Absolute Percentage Error) 回归模型评估的两个...
R-squared (R2): This is the proportion of the variance in the target variable explained by the model: 𝑅2=1−∑𝑛𝑖=1(𝑦𝑖−𝑦̂𝑖)2∑𝑛𝑖=1(𝑦𝑖−𝑦̲)2,R2=1−∑i=1n(yi−y^i)2∑i=1n(yi−y¯)2, (33) where 𝑦̲y¯ is the mean ...