Added 2 noise layers for Keras: GaussianDropout, GaussianNoise, with unit tests, python wrapper, serializatoin test.. How was this patch tested? PR validation test passed. Related links or issues (optional) fixed https://github.com/intel-analytics/BigDL/issues/XXX Do we need compare with Ker...
noise_img[rand_x, rand_y]=255returnnoise_img def gaussian_noise(img, mean=0,var=0.001):""":param img: the original :param mean:setmean :paramvar:setvar:return:"""noise_img = np.array(img /255, dtype=float, copy=True) noise= np.random.normal(mean,var**0.5, noise_img.shape)out...
# 需要导入模块: from keras.models import Sequential [as 别名]# 或者: from keras.models.Sequential importadd[as 别名]defdefine_model(lr, momentum):# CONFIGmodel = Sequential()# Create Layers# CONVNETlayers = []#layers.append(GaussianNoise(0.02))layers.append(Convolution2D(8,9,9, activation ...
iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,0.05*255), per_channel=0.5)), iaa.Sometimes(0.5, iaa.Add((-10,10), per_channel=0.5)), iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20,20))), iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha( exponent=(-4,0), first=iaa....
add noise 给图像添加噪音折叠全部页面 句法 J =无噪声(I,‘高斯’) J =无噪声(I,‘高斯’,m) J =杂音(I,‘gaussian’,m,var_gauss) J =杂音(I,‘localvar’,var_local) J =杂音(I,‘localvar’,intensity_map,var_local) J =无噪音(I,‘泊松’) J =杂音(I,‘盐和胡椒粉’) J =杂音(I...
()sys.path.append(now_dir)chat=ChatTTS.Chat()chat.load(source="local",compile=False)# Sample a speaker from Gaussian.rand_spk=chat.sample_random_speaker()logger.info(f'rand_spk:{rand_spk}')params_infer_code=ChatTTS.Chat.InferCodeParams(spk_emb=rand_spk,temperature=.3,top_P=0.7,top_...
Tencent is a leading influencer in industries such as social media, mobile payments, online video, games, music, and more. Leverage Tencent's vast ecosystem of key products across various verticals as well as its extensive expertise and networks to gain
openFrameworks addon for modeling a data distribution as a Gaussian mixture model Maintained by genekogan Last updated 8 years ago 4 Categories: Algorithms, Machine Learning ofxGNet Addon A general purpose, high level neural network ofxAddOn capable of modeling and mimicking arbitrary datasets with ea...
尽管这类方法在许多领域的到了应用,然而这类方法的输出是观测变量间的因果关系,而忽略了隐变量间的因果关系。近期,研究学者利用适用于隐变量下新的“d-分离准则”,包括Low-rank条件,Generalized Independent Noise(GIN)条件等,给出了线性系统下隐变量...
openFrameworks addon for modeling a data distribution as a Gaussian mixture model committed on 7 December, 2014 added thumbnail genekogan ofxSequencer sequencer addon for openframeworks which supports discrete or continuous cell values committed on 7 December, 2014 added thumbnail genekogan ofxKinectPro...