L2正则化≠Weight Decay,传统的Adam+L2正则化的实现会导致历史梯度范数大的参数受到的正则化惩罚偏小,...
L2正则化与权重衰减在原理上等价,都通过惩罚参数的L2范数来防止过拟合。对于裸SGD优化器,两者实现等价,因为每步更新量均来自负梯度方向乘以学习率。然而,当使用带有动量的Adam优化器时,L2正则化与权重衰减并非等价。传统Adam优化器在更新参数时,需要考虑历史梯度信息。引入L2正则化后,虽然理论上等价,...
L2正则化≠Weight Decay,传统的Adam+L2正则化的实现会导致历史梯度范数大的参数受到的正则化惩罚偏小,...
已确认torch版本的实现为grad = grad.add(param, alpha=weight_decay),torch版本代码使用Adam,配置weight_decay=0.01可收敛,但在MindSpore下使用相同配置仍然无法收敛。 wangnan39 成员 4年前 复制链接地址 可以考虑使用AdamWeightDecay,AdamWeightDecay的参数更新及weight_decay公式详见: https://gitee.com/mindspore...
论文Decoupled Weight Decay Regularization中提到,Adam 在使用时,L2 regularization 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时,用 AdamW 替换 Adam+L2 会得到更好的性能。 TensorFlow 2.x 在tensorflow_addons库里面实现了 AdamW,可以直接pip install tensorflow_addons进行安装(在 windows 上...
In the current pytorch docs for torch.Adam, the following is written: "Implements Adam algorithm. It has been proposed in Adam: A Method for Stochastic Optimization. The implementation of the L2 penalty follows changes proposed in Decoupled Weight Decay Regularization." This would lead me to beli...
[pytorch optim] Adam 与 AdamW,L2 reg 与 weight decay,deepseed 10:53 [pytorch optim] pytorch 作为一个通用优化问题求解器(目标函数、决策变量) 08:55 [lora 番外] LoRA merge 与 SVD(矩阵奇异值分解) 06:45 [概率 & 统计] KL 散度(KL div)forward vs. reverse 11:03 [矩阵微分] 标量/矢量...
论文首先发现问题,和其他相关研究类似,L2和weight decay在adam这种自适应学习率上的表现很差,导致很多人还是采用SGD+momentum策略。类似的有相关研究,从各种方面出发,作者发现效果差的最主要原因是L2效果不好。因此其最主要的贡献是: improve regularization in Adam by decoupling the weight decay from the gradient-...
Tensors and Dynamic neural networks in Python with strong GPU acceleration - Adding support for differentiable lr, weight_decay, and betas in Adam/AdamW · pytorch/pytorch@81ee6d7
L _2 _2 regularization and weight decay regularization are equivalent for standard stochastic gradient descent (when rescaled by the learning rate), but as we demonstrate this is \emph{not} the case for adaptive gradient algorithms, such as Adam. While common deep learning frameworks of these al...