在上文中我们介绍了Acort-Critic的一种实现方式,本文主要介绍AC网络的一些优化算法。 再次回顾和介绍一些基础概念和算法。先看下时序差分算法和优势函数的概念。 TD和优势函数 马尔科夫性质以及贝尔曼等式决定了,值函数可以定义为递归形式: 状态值函数:Vπ(s)=∑A_tπ(A_t|S_t=s)∑St+1,R_tP_r(St+1,R...
Critic:Critic 就是式子中的 Q,是一个”评论者“的角色,用来评论 actor 所做出的动作实际能得到多少价值。 我们可以把 Actor-Critic 算法比喻为:Actor在台上跳舞,一开始舞姿并不好看,Critic根据Actor的舞姿打分。Actor通过Critic给出的分数,去学习:如果Critic给的分数高,那么Actor会调整这个动作的输出概率;相反,如果...
Actor-Critic模型是一种基于值函数和策略函数的强化学习算法。其中,Actor负责学习策略函数,根据当前状态选择动作;Critic负责学习值函数,评估当前状态的价值。Actor-Critic模型通过策略评估和策略改进两个步骤来不断优化策略。Actor-Critic模型的算法 Actor-Critic模型的算法包括两个主要步骤:策略评估和策略改进。在策略评...
首先,我们要明白Actor和Critic分别是什么。Actor就像是我们的小助手,负责根据当前策略选择行动。而Critic则像是严格的老师,时刻评估我们的策略表现,告诉我们哪些地方做得好,哪些地方需要改进。在训练过程中,Actor和Critic会紧密合作。Actor会根据Critic的反馈调整自己的策略,以最大化期望回报。而Critic则会根据实际奖...
1.背景介绍 Actor-Critic方法是一种混合的深度强化学习算法,它结合了策略梯度(Policy Gradient)和值网络(Value Network)两种方法。这种方法的核心思想是将策略网络(Actor)和价值网络(Critic)两部分组合在一起,通过对这两部分网络的训练和优化,实现智能体的行为策略和状态价值的估计。
Critic:Critic 就是式子中的 Q,是一个”评论者“的角色,用来评论 actor 所做出的动作实际能得到多少价值。使用TD 方法来更新 Q 网络。 Actor:Actor 就是指的 Policy Function,是用来和环境交互,做出动作,可以理解为一个”表演者“。使用actor-critic policy gradient 更新策略。
Actor-Critic: 我们首先要计算的是优势函数 A(s, a),将其展开: 运行一次得到的 sample 可以给我们提供一个 Q(s, a) 函数的 unbiased estimation。我们知道,这个时候,我们仅仅需要知道 V(s) 就可以计算 A(s, a)。 这个value function 是容易用 NN 来计算的,就像在 DQN 中估计 action-value function 一...
我们可以发现,Actor-Critic可以说是对之前介绍的强化学习算法进行了融合,包括DDPG中使用的目标网络来源于DQN,TD3中的截断Double Q-learning来源于Double Q-learning等等。而SAC又是这些方法的集大成者,充分考虑了随机策略对于多最优路径强化学习问题的重要性,其中包含了大量的数学理论和推导。由于能力优先,第6章和第7...
梯度更新部分中,∇θlogπθ(st,at)∇θlogπθ(st,at)是我们的分值函数,不用动,要变成Actor的话改动的是vtvt,这块不能再使用蒙特卡罗法来得到,而应该从Critic得到。 而对于Critic来说,这块是新的,不过我们完全可以参考之前DQN的做法,即用一个Q网络来做为Critic, 这个Q网络的输入可以是状态,而输出是每个...