深入理解强化学习(七)- Actor-Critic 图0-1 强化学习方法 第6章在介绍PG的时候我们提到,在目标函数中通常会引入一个基准函数b(Si)来降低梯度估计的方差,并且这个基准函数是一个只和状态Si相关的函数。在PG中,我们基于MC的思想,基于误差项∑t=i∞γt−iRt−b(Si)来优化基准函数,但正如第4章所提到的,MC...
并行化在 actor-critic 算法中也很重要,对于 synchronized parellel actor-critic 算法来说我们采用的是相同的 policy 但是有多个 simulator 来运行数据,对应到算法就是我们并行执行的是 step 2-step 5,之所以做并行的原因主要不是为了加速,而是因为在监督学习的过程中我们往往在一个batch的更新中需要多个样本(大于1)...
Actor-Critic模型在强化学习中的应用 Actor-Critic模型在强化学习中有广泛的应用。例如,在机器人控制和游戏玩法等领域,Actor-Critic模型可以通过与环境的交互来学习最优策略,实现自主决策和智能行为。此外,在金融交易和资源管理等领域,Actor-Critic模型也可以用于优化决策策略,提高系统的效益和性能。综上所述,Actor-...
Critic:Critic 就是式子中的 Q,是一个”评论者“的角色,用来评论 actor 所做出的动作实际能得到多少价值。 我们可以把 Actor-Critic 算法比喻为:Actor在台上跳舞,一开始舞姿并不好看,Critic根据Actor的舞姿打分。Actor通过Critic给出的分数,去学习:如果Critic给的分数高,那么Actor会调整这个动作的输出概率;相反,如果...
Actor-Critic算法分为两部分,我们分开来看actor的前身是policy gradient他可以轻松地在连续动作空间内选择合适的动作,value-based的Qlearning做这件事就会因为空间过大而爆炸,但是又因为Actor是基于回合更新的所以学习效率比较慢,这时候我们发现可以使用一个value-based的算法作为Critic就可以实现单步更新。这样两种算法相互补...
Actor-Critic 是价值学习和策略学习的结合。Actor 是策略网络,用来控制agent运动,可以看做是运动员。Critic 是价值网络,用来给动作打分,像是裁判。 4. Actor-Critic 4.1 价值网络与策略网络构建 a. 原理介绍 状态价值函数: Vπ(s)=∑aπ(a|s)⋅Qπ(s,a)Vπ(s)=∑aπ(a|s)⋅Qπ(s,a) (离散情况...
强推!MPC+强化学习中英字幕18讲,强化学习Actor Critic模型预测控制,人类水平性能的自主视觉无人机,动态系统和仿真、最优控制、策略梯度方法共计21条视频,包括:Actor Critic 模型预测控制、1.Lecture1-介绍Introduction - Joschka Boedecker 和 Moritz Diehl1、2.lectu
Actor:Actor 就是指的 Policy Function,是用来和环境交互,做出动作,可以理解为一个”表演者“。使用actor-critic policy gradient 更新策略。我们可以把 Actor-Critic 算法比喻为:Actor在台上跳舞,一开始舞姿并不好看,Critic根据Actor的舞姿打分。Actor通过Critic给出的分数,去学习:如果Critic给的分数高,那么...
基于模型的强化学习:结合模型自由与基于模型的方法,以提高学习效率和泛化能力,是当前研究的另一个前沿方向。例如,使用模型预测来辅助策略梯度或Actor-Critic学习,减少探索的盲目性。信任区域方法与稳健性:为了解决策略更新时的稳定性问题,信任区域策略优化方法逐渐兴起,旨在限制策略更新幅度,保证学习过程的平滑和稳定...
通过使用Critic网络估计q函数,使用Actor网络确定最优行为,DDPG算法有效地融合了策略梯度方法和DQN的优点。这种混合方法允许代理在连续控制环境中有效地学习。import randomfrom collections import dequeimport torchimport torch.nn as nnimport numpy as npfrom actor_critic import Actor, Criticclass ReplayBuffer: ...