深度确定性策略梯度算法(Deep Deterministic Policy Gradient, DDPG)中的Critic网络就是希望能对状态-动作对(s, a)给出正确的分数,其优化的目标函数就是公式(1-3),这和DQN的目标函数是一样的。Q值学习的目标是函数逼近,DDPG中在Q值学习中有两点值的关注。 回放缓存:也就是之前所有策略的集合。DDPG是一个off-po...
做好了之前的铺垫就可以进入到本节的真正的主题 Actor-Critic 算法: Actor-Critic 算法和之前 经典的 policy gradient 的算法相比多了两个步骤就是 第2行和第3行,其余部分 几乎和 policy gradient 方法是一样的。 首先因为在这里我们使用的是 advantage 来更新 policy,所以我们就必须计算出 advantage,而计算 advan...
actor-critic 演员评论家算法 好了终于到这里了,强化学习这个小山坡我算是终于到了最上面,但是还有更高的山峰让我去远眺,现在也只是敲开了我科研之路的大门,而演员评论家就是我要去学习的第一个前沿算法,先通俗点讲,就是有个演员,他就是演戏,会有一个经纪人,根据观众们的反馈以及票房数据(环境reward),给他打...
Critic:Critic 就是式子中的 Q,是一个”评论者“的角色,用来评论 actor 所做出的动作实际能得到多少价值。 我们可以把 Actor-Critic 算法比喻为:Actor在台上跳舞,一开始舞姿并不好看,Critic根据Actor的舞姿打分。Actor通过Critic给出的分数,去学习:如果Critic给的分数高,那么Actor会调整这个动作的输出概率;相反,如果...
Critic:Critic 就是式子中的 Q,是一个”评论者“的角色,用来评论 actor 所做出的动作实际能得到多少价值。使用 TD 方法来更新 Q 网络。Actor:Actor 就是指的 Policy Function,是用来和环境交互,做出动作,可以理解为一个”表演者“。使用actor-critic policy gradient 更新策略。我们可以把 Actor-Critic 算法...
答案就是 Actor-Critic。Actor-Critic 是一系列算法,目前前沿的很多高效算法都属于 Actor-Critic 算法,今天我们将会介绍一种最简单的 Actor-Critic 算法。需要明确的是,Actor-Critic 算法本质上是基于策略的算法,因为这系列算法都是去优化一个带参数的策略,只是其中会额外学习价值函数来帮助策略函数的学习。
critic的式子:q=Q(s,a|ϕ)=Q(s,π(s|θ)|ϕ)而更新actor的思路是,对于特定状态s,调整...
Actor-Critic 是价值学习和策略学习的结合。Actor 是策略网络,用来控制agent运动,可以看做是运动员。Critic 是价值网络,用来给动作打分,像是裁判。 4. Actor-Critic 4.1 价值网络与策略网络构建 a. 原理介绍 状态价值函数: Vπ(s)=∑aπ(a|s)⋅Qπ(s,a)Vπ(s)=∑aπ(a|s)⋅Qπ(s,a) (离散情况...
Actor-Critic 算法中额外引入一个价值网络,接下来的代码定义我们的价值网络 ValueNet,输入是状态,输出状态的价值。 class ValueNet(torch.nn.Module): def __init__(self, state_dim, hidden_dim): super(ValueNet, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) ...
Advantage Actor Critic (A2C):Actor-Critic Algorithms Github:https://github.com/xiaochus/Deep-Reinforcement-Learning-Practice 环境 Python 3.6 Tensorflow-gpu 1.8.0 Keras 2.2.2 Gym 0.10.8 算法原理 AC算法的结构如下图所示。在AC中,policy网络是actor(行动者),输出动作(action-selection)。value网络是criti...