Bayesian Active Learning for Classification and Preference Learning(论文2011年)通过贪婪地找到一个能使当前模型熵最大程度减少的数据点x,但由于模型参数维度很高,直接求解困难,因此在给定数据D和新增数据点x条件下,模型预测和模型参数之间的互信息。 Deep Bayesian Active Learning with Image Data(论文,代码2017年)...
主动学习(Active Learning)的大致思路就是:通过机器学习的方法获取到那些比较“难”分类的样本数据,让人工再次确认和审核,然后将人工标注得到的数据再次使用有监督学习模型或者半监督学习模型进行训练,逐步提升模型的效果,将人工经验融入机器学习的模型中。 在没有使用主动学习(Active Learning)的时候,通常来说系统会从样...
1.2active learning与半监督学习的不同 很多人认为主动学习也属于半监督学习的范畴了,但实际上是不一样的,半监督学习和直推学习(transductive learning)以及主动学习,都属于利用未标记数据的学习技术,但基本思想还是有区别的。 如上所述,主动学习的“主动”,指的是主动提出标注请求,也就是说,还是需要一个外在的能够...
active learning模型通过少量初始标记样本 L 开始学习,通过一定的查询函数 Q 选择出一个或一批最有用的样本,并向督导者询问标签,然后利用获得的新知识来训练分类器和进行下一轮查询。主动学习是一个循环的过程,直至达到某一停止准则为止。 需要注意的是,active learning是一个算法框架,上图中的单个模块具备可替换性(...
Settles, Burr 的 Active Learning Literature Survey 文章为经典的主动学习工作进行了总结。上图是经典的基于池的主动学习框架。在每次的主动学习循环中,根据任务模型和无标签数据的信息,查询策略选择最有价值的样本交给专家进行标注并将其加入到有标签数据集中继续对任务模型进行训练。因为主动学习的过程中存在人的标注,...
1.1 active learning的基本思想 主动学习的模型如下: A=(C,Q,S,L,U), 其中C 为一组或者一个分类器,L是用于训练已标注的样本。Q 是查询函数,用于从未标注样本池U中查询信息量大的信息,S是督导者,可以为U中样本标注正确的标签。学习者通过少量初始标记样本L开始学习,通过一定的查询函数Q选择出一个或一批最有...
虽然许多团队一开始都是手动标注数据集,但更多团队已逐渐实现数据标注的部分自动化,比如采用主动学习方法(Active Learning),以提高效率。 如果想要了解主动学习,您首先需要了解监督机器学习和无监督机器学习之间的区别。监督学习认为,我们需要为机器提供标注正确的数据,让机器从这些示例中学习如何正确标注数据。无监督...
主动学习(Active Learning)是指在机器学习建模过程中,通过算法筛选出最有价值的样本数据,以供人工标注,从而提高模型效率与精度的方法。此方法旨在解决业务场景中获取标注数据成本高、效率低的问题。在工业界,尤其是图像标注领域,虽然有像 ImageNet 这样的大型数据库,但在特定业务场景中,获取标注数据...
1.1 active learning的基本思想 主动学习的模型如下: A=(C,Q,S,L,U), 其中C 为一组或者一个分类器,L是用于训练已标注的样本。Q 是查询函数,用于从未标注样本池U中查询信息量大的信息,S是督导者,可以为U中样本标注正确的标签。学习者通过少量初始标记样本L开始学习,通过一定的查询函数Q选择出一个或一批最有...
Principle 4: Active learning •Learners learn best by actively using the language they are learning. In Chapter 1, I gave a brief introduction to the concept of experiential learning. A key principle behind this concept ...