1.算法简介: 蚁群算法(AntClony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。 蚁群
L_{k}:表示蚂蚁k遍历完所有城市后经历的总路程长度。 在算法的初始时刻,将m只蚂蚁将m只蚂蚁随机地放到n 座城市,同时,将每只蚂蚁的禁忌表tabu的第一个元素设置为它当前所在的城市。此时各路径上的信息素量相等,设\tau_{ij}\left( 1 \right)=c(c为一较小的常数)在时刻t,蚂蚁k从城市i转移到城市j的概率...
一、算法简介蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法。 二、算法基本原理 蚂蚁在行走过程中会释放一种称为“信息素”的物质,用来标识自己的行走路径。 在寻找食物的过程中,根据...
1.算法背景——蚁群的自组织行为特征 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。 自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到...
基于蚁群算法(ACO)的TSP(Python实现) 1.项目介绍 基于蚁群算法(Ant Colony Optimization, ACO)的TSP(Traveling Salesman Problem,旅行商问题),求解方法源自观察到蚂蚁在寻找食物时释放信息素,并根据信息素浓度选择路径的行为。这种自组织调节的行为启发了一种新颖的启发式优化方法,即蚁群算法。在TSP问题中,蚂蚁在搜索空...
蚁群算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,并首先使用在解决TSP(旅行商问题)上。 自然界中有一个神奇的现象,即蚂蚁在没有提示的情况下总是能够找到从巢穴到食物的最短路径,这是为什么呢?原因就是蚂蚁在寻找食物时,能在其走过的路径上释放一种特殊的分泌...
蚁群算法(Ant Colony Optimization)是一种求解组合优化问题的元启发式算法。蚁群算法的思想起源于蚂蚁依靠共享信息素(pheromone)信息来寻找最短路径的现象,在ACO中,蚁群中的蚂蚁依靠信息素为指导来构造和改进解方案。 当前蚁群算法在静态优化问题和动态优化问题之中都有广泛的应用。蚁群算法作为构造算法(construction heurist...
一、蚁群算法 1.基本原理 蚁群算法(Ant Colony Optimization,ACO)是一种基于种群寻优的启发式搜索算法,有意大利学者M.Dorigo等人于1991年首先提出。该算法受到自然界真实蚁群集体在觅食过程中行为的启发,利用真实蚁群通过个体间的信息传递、搜索从蚁穴到食物间的最短路径等集体寻优特征,来解决一些离散系统优化中的困难问...
蚁群算法(ACO)MATLAB实现 (一)蚁群算法的由来 蚁群算法(ant colony optimization)最早是由Marco Dorigo等人在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找食物时,通过分泌一种称为信息素的生物激素交流觅食信息从而能快速的找到目标,据此提出了基于信息正反馈原理的蚁群算法。