(1)a(n+1)=2Sn+3 an=2S(n-1)+3 两式相减,a(n+1)-an=2[Sn-S(n-1)]=2an 所以a(n+1)=3an 故{an}是以3为首项,公比为3的等比数列 an=3*3^(n-1)=3^n (2)因为bn是等差数列,所以b1+b3=2b2,15=b1+b2+b3=3b2所以b2=5b1+b3=10b3=10-b1 (a1/3)+b1=(3/3)+b...
解:(1)∵an+1=2Sn+1,∴当n≥2时,an=2Sn-1+1两式相减得:an+1=3an(n≥2)又a2=2a1+1=3=3a1,∴an+1=3an(n∈N*).∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1.又b1=b2-d=5-2=3,∴bn=b1+(n-1)d=2n+1.(2)n⋅b_n=(2n+1)⋅3^(n-1) 令T _n=3*1+...
∴a1=1,a2=3,a3=9, 在等差数列{bn}中, ∵b1+b2+b3=15,∴b2=5. 又因a1+b1,a2+b2,a3+b3成等比数列, 设等差数列{bn}的公差为d, ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2, ∵bn>0(n∈N*), ∴舍去d=-10,取d=2,∴b1=3. ∴bn=2n+1(n∈N*). (2)由(1)知 ∴Tn=a1...
解:数列{an}满足a1=1,an+1=2Sn+1①, 当n⩾2时,an=2Sn−1+1②, ①−②得an+1−an=2an, 所以an+1an=3(常数), 故数列{an}是以a1=1为首项,3为公比的等比数列. 所以an=1×3n−1=3n−1. (2) 解:由于{bnan}是首项为1,公差为2的等差数列, 故bnan=1+2(n−1)=2n−1...
解(1)证明:a1=2,an+1=3an+2n-1,∴an+1+n+1=3(an+n).又a1+1=3∴数列{an+n}是首项为3,公比为3的等比数列则an+n=3·31=3n,∴an=3n-n,即数列{an}的通项公式为an=3-n(2)S=(3+32+…+3)-(1+2+…+n)3(1-3)n(1+n)1-32=(3+1-n2-n-3). 结果...
【解析】(1)数列{an}满足an=3an1+3n(n≥2,n∈N),所以an-3an1=3n因为3≠0,-=1为常数,故数列a3是等差数列,首项为=1,公差为1,从而=n于是an=n3n(n∈N*)(2)Sn=3+2×32+3×33+4×34+…+(n-1)3m1+n3"3Sn=32+2×33+3×34+4×35+…+(n-1)3+n3n+1,则-2Sn=3+32+33+...
(Ⅰ)由an+1=2Sn+1可得an=2Sn-1+1(n≥2),两式相减得an+1-an=2an,an+1=3an(n≥2).又a2=2S1+1=3,所以a2=3a1.故{an}是首项为1,公比为3的等比数列.所以an=3n-1.由点P(bn,bn+1)在直线x-y+2=0上,所以bn+1-bn=2.则数列{bn}是首项为1,公差为2的等差数...
∵a1=1,an+1=2Sn+1(n∈N*),∴当n≥2时,an=2Sn-1+1,两式作差得an+1-an=2Sn-2Sn-1=2an,即an+1=3an,当n=1时,a2=2S1+1=2+1=3,满足a2=3a1,综上恒有an+1=3an,即数列{an}是公比q=3的等比数列,则an=3n-1,在等差数列{bn}中,b2=5,且公差d=2.∴bn=b2+(n-2)d=5+2(n...
解析: =,∴=2n-1,∴a1+a2+…+an=(2n-1)n;a1+a2+…+an-1=(2n-3)(n-1)(n≥2),当n≥2时,an=(2n-1)n-(2n-3)(n-1)=4n-3;a1=1也适合此等式,∴an=4n-3. 解析: (1)当n=1时,a1=1,3an+1+2Sn=3⇒a2=; 当n≥2时,3an+1+2Sn=3⇒3an+2Sn-1=3,得3(an+1-an)...
【答案】(Ⅰ)由an+1=2Sn+3,an=2Sn-1+3(n≥2)两式作差即可求得an;(Ⅱ)由(Ⅰ)求得an=3n,成等比数列可求得bn,用裂项法可求得数列1 +1的前n项和Tn.(Ⅰ)由an+1=2Sn+3,an=2Sn-1+3(n≥2)得:an+1-an=2an∴an+1=3an(n≥2)∴1+1 =3(n22) 1(2分)=2413=9,2=3 2 1,(3...