矩阵是一种线性代数中的基本对象,由行和列组成,通常用大写字母A、B、C等表示。在计算机科学中,矩阵用于描述数据结构,如二维数组或表格,以及进行各种运算操作,如加法、乘法、求逆、转置、行列式等。创建矩阵的过程是将行和列的数据以某种方式组合在一起形成矩阵。例如
861 翻转矩阵后的得分 贪心算法 中等 862 和至少为 K 的最短子数组 队列,二分查找 困难 863 二叉树中所有距离为 K 的结点 树,深度优先搜索,广度优先搜索 中等 864 获取所有钥匙的最短路径 堆,广度优先搜索 困难 865 具有所有最深结点的最小子树 树 中等 866 回文素数 数学 中等 867 转置矩阵 数组 简单 ...
a[j][i]=t; } }相关知识点: 试题来源: 解析 答案:j<=i或i>=j@a[i][j]=a[j][i] 评析: 将矩阵转置就是将行列数互换,即第二行第三列的数与第三行第二列的数进行 互换。所以第一个空应当填入j<=i,第二空填入a[i][j]=a[j][i]。反馈 收藏 ...
解析 1:1:[NN]a[i][j]=a[j][i] 评析: 将矩阵转置就是将行列数互换,即第二行第三列的数与第三行第二列的数进行互换。所以填入a[i][j]=a[j][i]。 等级:1 难度:1 区分度:1 出题人:文本导入 修改人: 审核人: 创建时间:2008-06-25 最后修改时间:...
试计算(A*B)的转置,A*B-B*A A、 [ 1 8 -7 2 10 -8 3 12 -9] [ 0 2 -6 -4 0 -18 14 24 0] B、 [ 1 8 7 ...
转置矩阵的运算 转置矩阵的运算指将一个矩阵的行和列互换得到另一个新的矩阵。换句话说,如果矩阵A的行数为m,列数为n,那么A的转置矩阵AT的行数为n,列数为m,且AT的第i行第j列的元素等于A的第j行第i列的元素。转置矩阵的运算在数学、统计等领域广泛应用,例如矩阵乘法、线性方程组的求解等。
如下图所示,在A4单元格输入“=B1”,然后复制A4的内容粘贴至A4:E15区域,A1:A15就可以得到所需要的效果,最后记得复制A1:A15内容,再选择性粘贴去除公式。
下面rotate函数的功能是:将n行n列的矩阵A转置为A’,例如: 1 2 3 4 1 5 9 13 5 6 7 8 2 6 10 14 当 A= 9 10 11 12 则 A’= 3 7 11 15 13 14 15 16 4 8 12 16 请填空 #define N 4 void rotate(int a[][N]) { int i,j,t; for(i=0;i { t=a[i][j]; ...
在进行转置和添加索引之前,我们需要先获取数据并创建DataFrame。假设我们已经有了一个DataFrame df,数据如下: importpandasaspd# 创建示例DataFramedf=pd.DataFrame({'A':[1,2,3],'B':[4,5,6]})print(df) 1. 2. 3. 4. 5. 转置DataFrame 接下来,我们需要对DataFrame进行转置操作。通过调用transpose()方法...
[244]: # 那如果要把一个矩阵的每一行都加上一个向量呢 x = np.array([[1,2,3], [4,5,6]]) v = np.array([1,2,3]) # 恩,其实是一样的啦 print x + v [[2 4 6] [5 7 9]] In [245]: x = np.array([[1,2,3], [4,5,6]]) # 2x3的 w = np.array([4,5]) # ...