01背景从激光雷达等设备中获取的点云往往有所缺失(反光、遮挡等),这给点云的后续处理带来了一定的困难,也凸显出点云补全作为点云预处理方法的重要性。点云补全(Point Cloud Completion)用于修补有所缺失的点云(Point Cloud),从缺失点云出发估计完整点云,从而获得更高质量的点云。点云有助于用较小的数据...
对广泛3D数据收集的需求向开发一个能够有效完成需要深度感知的现实场景中遇到的各种对象类别的模型提出了重大挑战。 在名为《Point-Cloud Completion with Pretrained Text-to-image Diffusion Models》的论文中,英伟达和巴伊兰大学的研究人员利用预训练的文本到图像扩散模型来解决OOD对象的这一挑战。 实验证明,即便从未就...
背景 从激光雷达等设备中获取的点云往往有所缺失(反光、遮挡等),这给点云的后续处理带来了一定的困难,也凸显出点云补全作为点云预处理方法的重要性。 点云补全(Point Cloud Completion)用于修补有所缺失的点云(Point Cloud),从缺失点云出发估计完整点云,从而获得更高质量的点云。点云有助于用较小的数据量描述...
背景 从激光雷达等设备中获取的点云往往有所缺失(反光、遮挡等),这给点云的后续处理带来了一定的困难,也凸显出点云补全作为点云预处理方法的重要性。 点云补全(Point Cloud Completion)用于修补有所缺失的点云(Point Cloud),从缺失点云出发估计完整点云,从而获得更高质量的点云。点云有助于用较小的数据量描述...
在名为《Point-Cloud Completion with Pretrained Text-to-image Diffusion Models》的论文中,英伟达和巴伊兰大学的研究人员利用预训练的文本到图像扩散模型来解决OOD对象的这一挑战。 实验证明,即便从未就3D数据训练过,相关模型都可以用于文本引导的3D形状生成。这是通过SDS loss来完成,由SDS loss测量3D形状渲染图像与...
A CONDITIONAL POINT DIFFUSION-REFINEMENT PARADIGM FOR 3D POINT CLOUD COMPLETION 用于三维点云完成的条件性点扩散-精炼范式 摘要 三维点云是捕捉现实世界三维物体的重要三维表示。然而,真实扫描的三维点云往往是不完整的,为下游应用恢复完整的点云非常重要。大多数现有的点云完成方法使用Chamfer Distance(CD)损失进行训...
Gridding Residual Network for Dense Point Cloud Completion 主页:https://haozhexie.com/project/grnet 在点云分割方面,有一些方法尝试通过更通用的卷积操作来捕捉点云的空间关系。但是之前的方法都是基于一个强烈的假设,即输出点与输入点的三维坐标的相同,因此不能用于三维点云补全。
In this paper, we propose a Point Fractal Network (PFNet), a novel learning-based approach for precise and highfidelity point cloud completion. Unlike existing point cloudcompletion networks, which generate the overall shape ofthe point cloud from the incomplete point cloud and alwayschange existing...
标题:PF-Net: Point Fractal Network for 3D Point Cloud Completion 作者:Zitian Huang , Yikuan Yu, Jiawen Xu, Feng Ni, Xinyi Le 来源:CVPR 2020 编译:黄群军 审核:lionheart 摘要 在本文中,我们提出了一种点分形网络(PFNet),这是一种基于学习的新颖方法,可以实现精确和高保真的点云补全。PF-Net与现有...