需要视频中的课件的小伙伴可以关注我的公众号【AI评论员】回复【阿文】无偿领取在学习卷积神经网络时,其他的卷积核没有经常看到,反而是3×3的卷积核经常出现,它到底有什么过人之处,今天我们就来讨论卷积网络里一个基础概念,也就是卷积核尺寸,以及3×3卷积核在深度学习
卷积核可以用于图像处理和机器学习中的卷积操作。例如,在图像处理中,我们可以将3乘3的卷积核应用于一张图像上的每个像素,通过卷积操作来提取图像的特征。卷积核中的每个元素都有一个权重值,这些权重值会与输入图像中相应位置的像素值相乘,然后求和得到输出图像中对应位置的新像素值。通过改变卷积核的权重值,我们可以...
首先将轴承和齿轮复合故障信号通过连续小波变换得到振动信号的时频图,再通过小波核卷积层获得特征图,最后...
使用三个不同大小的卷积核是为了减少参数的数量。 1.首先是卷积核的数量问题。 因为一张图片可能有很多特征,所以可能需要学习多个卷积核用来提取图像特征。 图中不同颜色代表不同的特征,需要学习对应数量的卷积核进行特征提取。 对于灰度图像,例如一个图像大小是5×5, 有一个3×3的卷积核对着图像进行卷积,卷积结束...
小卷积核的使用妙处/为什么用3乘3的卷积核 3个kernel3相当于1个kernel7的; 2个kernel3相当于1个kernel5的; 更深(特征更多 (局部最优)),非线性层越多(使决策函数更加具有辨别能力) 参数量减少3*(3C)的平方 vs (7C)的平方 计算量也减少 3×3的9个格子,最中间的格子是一个感受野中心,可以捕获上下左右...
可以发现对同样一幅图卷积,使用2个3 * 3卷积与1个5 * 5卷积得到的输出图大小是一样的,也就是说他们的感受野是一样大的,所以,可以总结出这样一个结论:2遍3 * 3卷积与1遍5 * 5卷积,特征提取能力是一样的。 那为何工业上常常用小的卷积核多次卷积去替代大卷积核一次卷积?
提升了网络的深度,在一定程度上提升了神经网络的效果,同时还减少了参数。而且3x3卷积核有利于更好地...
深度学习小笔记03-,3*3的卷积核为什么可以代替5*5的卷积核和7*7的卷积核以及参数怎么算,程序员大本营,技术文章内容聚合第一站。
1、3x3卷积核的作用(优势) 两个3×3的卷积层串联相当于1个5×5的卷积层(二者具有等效感受野5x5),3个串联的3×3卷积层串联的效果相当于一个7×7的卷积层; 下图展示了为什么“两个3x3卷积层”与“单个5x5卷积层”具有等效的5x5的感受野。 1)作用1:减少网络层参数 关于计算方法(见下文12感受野): 2)作用2...
从上面的图可以看出,采用一个5*5卷积核和两个3*3卷积核,它们卷积后的输出是相同大小,输出的每一个像素的感受野也相等。 在这样的前提下,有什么好处呢? 1、网络层数增加了,这增加了网络的非线性表达能力。 2、参数变少了,两个3*3和一个5*5的参数比例为3×3×2/(5×5)=0.72,同样的三个3×3和一个7...