需要视频中的课件的小伙伴可以关注我的公众号【AI评论员】回复【阿文】无偿领取在学习卷积神经网络时,其他的卷积核没有经常看到,反而是3×3的卷积核经常出现,它到底有什么过人之处,今天我们就来讨论卷积网络里一个基础概念,也就是卷积核尺寸,以及3×3卷积核在深度学习
这说明小波核卷积层成功的提取到了振动信号中的冲击特征及其对应的频率特征。
加强网络的非线性特征提取能力和减少过拟合等。1、加强网络的非线性特征提取能力:多个3x3卷积层可以使网络的学习更加深入和充分,提高网络的特征提取能力。2、减少过拟合:通过在多个3x3卷积层之间添加批量归一化层、残差连接等方法,可以有效地减少网络的过拟合现象。
深度学习小笔记03-,3*3的卷积核为什么可以代替5*5的卷积核和7*7的卷积核以及参数怎么算,程序员大本营,技术文章内容聚合第一站。
感受野:卷积神经网络各输出特征像素点,在原始图片映射区域大小。 举个例子,原图为3x3大小,我们使用3x3大小的卷积核卷积,得到的输出图片大小是1x1的,所以输出图片的感受野是3。 感受野表征了卷积核的特征提取能力。 2、2层3 * 3卷积与1层5 * 5卷积 设原图大小长宽皆为x(x>=5) ,我们使用5x5的卷积核在x方向上...
总结一下,1)3*3卷积核的骨架部分比边角部分更加重要;2)ACB可以增强卷积核的骨架部分,从而提高性能;3)和常规的ACB相比,将水平和垂直核添加到边界会降低模型的性能;4)这样做也可以增加边界的重要性,但是不能削弱其它部分的重要性。因此,我们将ACNet的有效性部分归因于它进一步增强卷积核骨架的能力。5...
3*3卷积:第一个3*3卷积有(x-3+1)*(x-3+1)个输出点,每个输出点对应3*3次乘法和3*3次加法,第二个3*3卷积的输入是(x-3+1)*(x-3+1),在其上做卷积有(x-3+1 -3+1)* (x-3+1 -3+1)个输出点,每个输出点对应3*3次乘法和3*3次加分。 总的来说当x<22/7 或者10<x ,两个3*3的卷积...
block”,对于每个残差函数F,使用3层堆叠而不是 2 层,3 层分别是1×1,3×3和1×1卷积。
这里既然用3*3卷积来替代更大尺寸的卷积,那么有一个前提,就是要保证两者具有同样大小的输出和感受野。 两个3*3的卷积才能代替一个5*5的卷积;三个3*3的卷积才能代替一个7*7的卷积。 以stride=1,padding=0我们来看看为何。 我们首先看一下采用5*5卷积的方案。
3层网络架构模型 3层网络结构 1.Darknet-53 模型结构 在论文中虽然有给网络的图,但我还是简单说一下。这个网络主要是由一系列的1x1和3x3的卷积层组成(每个卷积层后都会跟一个BN层和一个LeakyReLU)层,作者说因为网络中有53个convolutional layers,所以叫做Darknet-53(2 + 1*2 + 1 + 2*2 + 1 + 8*2 ...