需要视频中的课件的小伙伴可以关注我的公众号【AI评论员】回复【阿文】无偿领取在学习卷积神经网络时,其他的卷积核没有经常看到,反而是3×3的卷积核经常出现,它到底有什么过人之处,今天我们就来讨论卷积网络里一个基础概念,也就是卷积核尺寸,以及3×3卷积核在深度学习
这说明小波核卷积层成功的提取到了振动信号中的冲击特征及其对应的频率特征。
加强网络的非线性特征提取能力和减少过拟合等。1、加强网络的非线性特征提取能力:多个3x3卷积层可以使网络的学习更加深入和充分,提高网络的特征提取能力。2、减少过拟合:通过在多个3x3卷积层之间添加批量归一化层、残差连接等方法,可以有效地减少网络的过拟合现象。
我们知道现在在构建CNN时大家喜欢用33的卷积,而不是早期的55,77等更大尺寸的卷积,如vgg系列网络中全部使用了33的卷积。 这里既然用3*3卷积来替代更大尺寸的卷积,那么有一个前提,就是要保证两者具有同样大小的输出和感受野。 两个33的卷积才能代替一个55的卷积;三个33的卷积才能代替一个77的卷积。 以stride=1...
以AlexNet 模型的第一个卷积层为例 计算如上图所示,- 输入图片的尺寸统一为 227 x 227 x 3 (高度 x 宽度 x 颜色通道数),- 共具有96个卷积核,- 每个卷积核的尺寸都是 11 x 11 x 3,3为上一层的通道数 可以不指定- 已知 stride = 4, padding = 0,- 假设 batch_size = 256,- 则输出矩阵的高度...
深度学习小笔记03-,3*3的卷积核为什么可以代替5*5的卷积核和7*7的卷积核以及参数怎么算,程序员大本营,技术文章内容聚合第一站。
block”,对于每个残差函数F,使用3层堆叠而不是 2 层,3 层分别是1×1,3×3和1×1卷积。
3层网络架构模型 3层网络结构 1.Darknet-53 模型结构 在论文中虽然有给网络的图,但我还是简单说一下。这个网络主要是由一系列的1x1和3x3的卷积层组成(每个卷积层后都会跟一个BN层和一个LeakyReLU)层,作者说因为网络中有53个convolutional layers,所以叫做Darknet-53(2 + 1*2 + 1 + 2*2 + 1 + 8*2 ...
感受野:卷积神经网络各输出特征像素点,在原始图片映射区域大小。 举个例子,原图为3x3大小,我们使用3x3大小的卷积核卷积,得到的输出图片大小是1x1的,所以输出图片的感受野是3。 感受野表征了卷积核的特征提取能力。 2、2层3 * 3卷积与1层5 * 5卷积 设原图大小长宽皆为x(x>=5) ,我们使用5x5的卷积核在x方向上...
常见的卷积核大小有1×1、3×3、5×5、7×7,有时也会看到11×11,若在卷积层提取特征,我们通常选用3×3大小的卷积。 我们知道,两个3×3卷积核一个5×5卷积的感受野相同,三个3×3卷积和一个7×7卷积的感受野相同(通俗来讲,感受野就是可以提取到周围邻居个数的特征) 假设输入输出channel均为C,使用7×7...