cos2x的导数是-2sin2x。一、导数的概念 导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)...
We have thatI=∫0πcos2xdx=2∫0π/2cos2xdx=2∫0π/2cos2(π/2−x)dx=2∫0π/2sin2xdxand thusI=∫0π/2(cos2x+sin2x)dx=π/2 How do you use part one of the fundamental theorem of calculus to find the derivative of the functiong(x)=∫cos(t10)dt... ...
How do you integrate by parts [xcos2x] ? https://socratic.org/questions/how-do-you-integrate-by-parts-xcos2x Gió Apr 20, 2015 Have a look: Proving a cos(2nx) identity using induction https://math.stackexchange.com/q/1766726 What's the flaw in this derivative logic? https://math....
Find the first derivative of f(x) = (tan -1 x)ln(2x - 1) Find the first derivative of g(x) = \frac{x^2 + \tan x}{\cos x + x^{-5. Find the first derivative of y = (\tan x + 10)^{21}. Find the first derivative of y = (cos 4x)^3x....
f(x)=2x2sin(x)+2xcos(x) f(x)=3tan(x)sec(x) Derivatives: A derivative shows the rate at which a function is changing at one particular point. Derivatives are found out by using a method known as differentiation that is an important part ...
百度试题 结果1 题目Find the derivative of . ( ) A. cos (x^4) B. cos (x^2) C. 2xcos (x^2) D. 2xcos (x^4) 相关知识点: 试题来源: 解析 D 反馈 收藏
=-2sin2x。导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。相关内容解释:导数(Derivative)是...
Derivative of sqrt((1-cos2x)/(1+cos2x)) 01:25 Evaluate : int tan^(-1){sqrt((1-cos2x)/(1+cos2x))}dx. 02:14 inttan^(-1){sqrt((1-cos2x)/(1+cos2x))} dx = ? 02:14 Differentate : sqrt((1-cos2x)/(1+cos2x)) 02:50 सिद्ध कीजिए : cot^(...
If2x+2x=3, then the value ofx3+1x3+2is- यदि2x+2x=3हो, तो x^3+1/x^3+2 का मान क्या होगा? View Solution If2x+2x=1, then the value ofx3+1x3is यदि2x+2x=1हो, तोx3+1x3का मान होग...
Integral of cos(2*x) by x: sin(2*x)/2+C sin(2x)2 Draw graph Edit expression Direct link to this page Value at x= Integral Calculator computes an indefinite integral (anti-derivative) of a function with respect to a given variable using analytical integration. It also allows to ...