OCRNet 📚:这个模型专注于物体上下文表示学习和像素区域关联建模,语义理解深入。它适用于复杂场景分割、语义关系分析以及环境感知。TransUNet 💉:这个模型结合了CNN与Transformer,能够融合全局和局部特征。它在医学器官分割、CT图像分析、核磁共振成像、病变区域识别以及X光片分析中表现出色。如果你对语义分割、无人机、机...
《基于多尺度和注意力机制融合的语义分割模型研究》篇一一、引言随着深度学习技术的飞速发展,语义分割已成为计算机视觉领域的研究热点。语义分割旨在将图像中的每个像素分类为预定义的语义类别,从而为自动驾驶、医疗影像分析、卫星图像解析等众多领域提供了强有力的技术支持。近年来,多尺度和注意力机制在语义分割模型中得到...
语义分割作为计算机视觉的一个关键任务,在近几年的研究中得到了广泛的关注。目前主流的语义分割模型主要采用深度卷积神经网络(CNN)来实现。这些模型通过捕获上下文信息、提高特征表达能力等手段提高分割精度。然而,在处理多尺度目标和复杂背景时,这些模型仍存在局限性。为了解决这些问题,本文提出了一种融合多尺度和注意力机...
GSNet框架:解锁高效分割摧毁技术壁垒 为支持OVRSISS任务,研究团队设计了GSNet框架,采用了一种双流图像编码器(DSIE),它能从通用模型和领域特定模型提取互补特征,进而提升模型的分割性能。该方法的创新在于,采用了一种查询引导特征融合(QGFF)的机制,使得模型能够基于输入的语义类别,对特征进行更精准的提取与融合。 双流...
语义分割是计算机视觉领域的一个重要研究方向,它旨在将图像中的每个像素分配给一个类别标签,实现像素级的分类。近年来,语义分割领域取得了显著的进展,创新点主要集中在以下几个方面:1⃣深度学习架构:随着深度学习的发展,卷积神经网络(CNN)成为语义分割的主流方法。特别是全卷积网络(FCN)、U-Net、DeepLab系列等模型在...