Paper总表链接: ICLR 2024 Conference由于涉及超分的论文比较少,就不做方向的划分了,如有纰漏,欢迎大家评论区留言指正~ 1. RGT | Recursive Generalization Transformer for Image Super-Resolution(上交 Yul…
AdaBM: On-the-Fly Adaptive Bit Mapping for Image Super-Resolution Paper:https://arxiv.org/abs/2404.03296 Code:https://github.com/Cheeun/AdaBM Keywords: Quantization 量化 Transcending the Limit of Local Window: Advanced Super-Resolution Transformer with Adaptive Token Dictionary Paper:https://arxi...
Blog: 论文笔记:Pixel-Aware Stable Diffusion for Realistic Image Super-Resolution and Personalized Stylization 【12】Spatially-Variant Degradation Model for Dataset-free Super-resolution Paper: https://arxiv.org/abs/2407.08252 Code: https://github.com/shaojieguoECNU/SVDSR Keywords: Blind 【13】Confide...
超分辨率(Super-Resolution)领域的CVPR 2024论文涵盖了多个方向,从传统方法到现代技术,展现出了研究的多样性和深度。今年的热点显著集中在基于扩散模型的超分辨率,相关工作几乎主导了讨论。以下是对不同方向的论文概述。经典图像超分辨率方面,多篇论文探索了新方法,如采用自适应Token字典的高级超分辨率Tra...
现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。 AAAI 人工智能会议论文集:https://ojs.aaai.org/index.php/AAAI/index 图像超分 【1】Accelerating Image Super-Resolution Networks with Pixel-Level Classification Paper: https://arxiv.org/abs/2407.21448 ...
现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。 图像超分 1 Accelerating Image Super-Resolution Networks with Pixel-Level Classification Paper:https://arxiv.org/abs/2407.21448 Code:https://github.com/3587jjh/PCSR Keywords: Lightweight ...
现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。 图像超分 盲超分 / 真实世界 / 参考 视频超分 数据集 Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World Paper: Code: Keywords: Real World; Arbitrary-Scale ...
1. 3D Super-Resolution Model for Vehicle Flow Field Enrichment(日本横滨国立大学,日产汽车) Paper: WACV 2024 Open Access Repository Code: ~ Abstract: 在从空气动力性能角度进行车辆外形设计时,深度学习方法能够在短时间内估计流场。然而,估算出的流场通常比较粗糙,分辨率较低。因此,需要一个超分辨率模型来丰富...
1. ATD | Transcending the Limit of Local Window: Advanced Super-Resolution Transformer with Adaptive Token Dictionary(成电 顾舒航团队,ETH Yawei Li)超越局部窗口的极限: 带有自适应Token字典的高级超分辨率Transformer Paper: arXiv, CVPR 2024 Open Access Repository Code: github.com/LabShuHangGU Abstract:...
Abstract: 真实世界图像超分辨率(Real-world image super-resolution, RWSR)是一个长期存在的问题,因为低质量(low-quality, LQ)图像通常具有复杂且无法识别的退化。现有的生成对抗网络(GAN)或连续扩散模型等方法都存在各自的问题,其中生成对抗网络难以训练,而连续扩散模型则需要大量推理步骤。本文提出了一种用于 RWSR 的...