2013年 AMC 12B真题含答案 201312013AMC12B Problem 1 On a particular January day,the high temperature in Lincoln,Nebraska,was degrees higher than the low temperature,and the average of the high and low temperatures was .In degrees,what was the low temperature in Lincoln that day?内布拉斯加州...
2013 AMC 12B Problems批注本地保存成功开通会员云端永久保存去开通 2013 AMC 12B Problems Problem 1 On a particular January day, the high temperature in Lincoln, Nebraska, was degrees higher than the low temperature, and the average of the high and low temperatureswas . In degrees, what was the...
2013AMC12BProblems Problem1 OnaparticularJanuaryday,thehightemperatureinLincoln,Nebraska,was16degrees higherthanthelowtemperature,andtheaverageofthehighandthelowtemperatures was3º.Indegrees,whatwasthelowtemperatureinLincolnthatday? (A)-13(B)-8(C)-5(D)-3(E)11 Problem2 ...
2013 AMC 12B Problems/Problem 1 The following problem is from both the 2013 AMC 12B #1 and 2013 AMC 10B #3, so both problems redirect to this page. Problem On a particular January day, the high temperature in Lincoln, Nebraska, was degrees higher than the low temperature, and the average...
AMC10/12基础强化课程, 视频播放量 2、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 数学课不讲数学, 作者简介 读过1000+本书,全方位启发学生思考探寻真正喜欢和擅长事物的数学老师,相关视频:AMC数学竞赛班课 2014最后一题真题解析,2015AMC12真
2013-AMC12B-3When counting from 3 to 201, 53 is the ((51)^((st))) number counted. When counting backwards from 201 to 3, 53 is the (n^((th))) number counted. What is n?( ) A. 146 B. 147 C. 148 D. 149 E. 150 相关知识点: ...
20 C Problem 11 The following problem is from both the 2013 AMC 12B #6 and 2013 AMC 10B #11 If we complete the square after bringing the and terms to the other side, we get (x ? 5)2 ? ( y ? 3)2 ? 0 . Squares of real numbers are nonnegative, so we need both (x ? 5)...
425 -- 0:13 App amc10/amc12b原卷加答案解析 最后一波冲刺啦 高质量 509 -- 0:13 App AMC10/12 B卷官方已经确定这套!速来领取!原题答案解析整套 700 -- 0:10 App 2024AMC10/AMC12原卷已到。原卷已到。原卷加答案解析。速度来。 298 -- 9:27 App 2023-AMC10B-#25(Ashley 老师) 214 -...
2011参加全美数学竞赛AMC12B获邀参赛美国数学邀请赛AIME2并获得USAMO资格;2010年参加中国西部数学奥林匹克...
The following problem is from both the 2013 AMC 12B #14 and 2013 AMC 10B #21, so both problems redirect to this page. Problem Two non-decreasing sequences of nonnegative integers have different first terms. Each sequence has the property that each term beginning with the third is the sum...