如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
不定积分的公式:1、∫adx=ax+C,a和C都是常数 2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1 3、∫1/xdx=ln|x|+C 4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1 5、∫e^xdx=e^x+C 6、∫cosxdx=sinx+C 7、∫sinxdx=-cosx+C 8、∫cotxdx=ln|sinx|+C=-ln...
解题过程如下图:不定积分的公式:1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx| 正...