本题详细计算步骤如下图:
方法如下,请作参考:
根号下1+x^2的导数为:x/√(1+x^2)。过程:y=(1+x^2)^(1/2);y'=(1/2)*(1+x^2)^[(1/2)-1]*(1+x^2)'=(1/2)*(1+x^2)^(-1/2)*2x=x*(1+x^2)^(-1/2)=x/√(1+x^2)。 常见函数的导数: 1、x的n次方的导数为n乘以x的n-1次方。 2、常数的导数恒为0。 3、x分之...
设y等于根号1减去x2,两边同时平方。可得一个方程,但是你没给下限和上限,求不了 来自手机贴吧12楼2015-05-12 11:25 收起回复 恩有点坑 斩我明道 10 设y等于根号1减去x2,两边同时平方。可得一个方程,但是你没给下限和上限,求不了 来自手机贴吧13楼2015-05-12 11:28 回复 wqk...
根号下(1-x的平方)的导数是什么 相关知识点: 试题来源: 解析 y=√(1-x^2)=(1-x^2)^(1/2), ∴y'=1/2·(1-x^2)^(1/2-1)·(1-x^2)' =(-2x)/[2√(1-x^2)] =-x/√(1-x^2). 分析总结。 根号下1x的平方的导数是什么...
解答: 【√((1-x^2))】'=【((1-x^2)^(-1/2))/2】(1-x^2)'=(-2x)/(2√((1-x^2)))=-x(√((1-x^2)))/(1-x^2)分析总结。 1x²1x²1221x²2x21x²x1x²1x²或结果一 题目 根号下[1-(x)平方]的导数. 答案 [√(1-x²)]'={[(1-x²)^(-1/2)]/2}...
首先,求出根号下1+x的平方的导数:y=sqrt(1+x^2)y’=[1/(2√(1+x^2))]×2x y’=x/√(1+x^2)接下来,用泰勒公式展开y=x/√(1+x^2)函数:在x=0处展开,得到:y=0+0/2!+0/3!+0/4!+0/5!所以,根号下1+x的平方的泰勒展开式为:y=0+0/2!+0/3!+0/4!+0/5!
根据题意可以设y'为导数结果:y=√(1+x^2)y'={1/[2√(1+x^2)] } d/dx ( 1-x^2)={1/[2√(1-x^2)] } (-2x)=-x/√(1-x^2)即原式导数为:-x/√(1-x^2)
解析 y=(1+x²)^(1/2) y'=1/2*(1+x²)^(-1/2)*2x =x/√(1+x²) 分析总结。 扫码下载作业帮结果一 题目 求y=根号下1+x2的导数。 答案 y=(1+x²)^(1/2)y'=1/2*(1+x²)^(-1/2)*2x=x/√(1+x²)相关推荐 1求y=根号下1+x2的导数。
√(1+x)的导数为1/(2*√(1+x))。解:令f(x)=√(1+x),那么f'(x)=(√(1+x))'=((1+x)^(1/2))'=1/2*(1+x)^(-1/2)=1/(2*√(1+x))即√(1+x)的导数为1/(2*√(1+x))。