由于这个特性,在 CNN 中,FC 常用作分类器,即在卷积、池化层后加 FC 把特征变换到样本空间。而卷积可以看做一定条件约束的“全连接”,如用 1 * 1 的卷积,可以与全连接达到同样的效果。 但是由于全连接层参数冗余,有些模型使用全局平均池化 (Global Average Pooling, GAP) 来代替全连接。