1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。 备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature...
1.降维或升维,减少参数量 通过1*1卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量! 图示: g...
1x1的卷积核由于大小只有1x1,所以并不需要考虑像素跟周边像素的关系,它主要用于调节通道数,对不同的通道上的像素点进行线性组合,然后进行非线性化操作,可以完成升维和降维的功能,如下图所示,选择2个1x1大小的卷积核,那么特征图的深度将会从3变成2,如果使用4个1x1的卷积核,特征图的深度将会由3变成4。 02 减少参数...
我们可以有效地调整特征图的通道数。例如,假设输入特征图的大小为HxWxC,其中C表示通道数。经过1x1卷积...
1×1卷积 1×;1卷积1、增加非线性1×;1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性,使得网络可以表达更加复杂的特征。 2、特征降维通过控制卷积核的数量达到通道数大小的放缩。特征降维带来的好是可以减少参数和计算量。 不引入1×;1卷积的卷积操作: 引入1×...
1*1卷积核的作用 1.改变模型维度 二维的输入数据(如6∗66∗6)和1∗11∗1的卷积核 卷积,相当于原输入数据直接做乘法 三维的输入数据(如6∗6∗326∗6∗32)和1∗1∗321∗1∗32的卷积核卷积,相当于卷积核的32个数对原输入数据的32个数加权求和,结果填到最右侧对应方框中...
1、1*1的卷积核有什么作用?我们该怎么去理解它的原理呢? (1)当1*1卷积出现时,在大多数情况下它作用是升/降特征的维度,这里的维度指的是通道数(厚度),而不改变图片的宽和高。 使用1*1卷积是想加深加宽网络结构。 举个例子:比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H...
1×1卷积,又称为Network in Network 如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系。 但卷积的输出输入是长方体,所以1x
1*1卷积核在深度学习领域扮演着独特角色。其显著特征是参数量稀少,有助于减轻过拟合,同时,对于调整网络深度和宽度,提升模型性能具有重要作用。在处理数据时,1*1卷积核能够进行降维或升维操作,保持空间维度不变,仅改变通道数量。例如,将通道数从128调整到512,仅需128*512个参数,网络宽度提升四倍...